Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 271(1): 36-48, 2018 07.
Article in English | MEDLINE | ID: mdl-29516493

ABSTRACT

Analysis of intracellular cholesterol transport by fluorescence microscopy requires suitable fluorescent analogues of cholesterol. Most existing cholesterol analogues contain lipophilic dyes which can compromise the sterol properties in membranes. An alternative strategy is to introduce additional double bonds into the sterol ring system resulting in intrinsic fluorescence, while at the same time keeping the cholesterol-like properties of the analogues. Existing polyene sterols, such as dehydroergosterol (DHE) or cholestatrienol (CTL), however, contain only three double bonds and suffer from low brightness, significant photobleaching and excitation/emission in the ultraviolet region. Thus, special equipment is required to image such sterols. Here, we describe synthesis, characterization and intracellular imaging of new polyene sterols containing four conjugated double bonds in the sterol ring system. We show that such analogues have red-shifted excitation and emission by ∼20 nm compared to DHE or CTL. The red shift was even more pronounced when preventing keto-enol tautomer equilibration by protecting the 3'-hydroxy group with acetate. We show that the latter analogue can be imaged on a conventional wide field microscope with a DAPI/filipin filter cube. The new polyene sterols show reduced photobleaching compared to DHE or CTL allowing for improved deconvolution microscopy of sterol containing cellular membranes.


Subject(s)
Cholesterol/chemistry , Microscopy, Fluorescence/methods , Polyenes/chemistry , Sterols/chemistry , Biological Transport , Cell Membrane/chemistry , Cholesterol/analogs & derivatives , Cytoplasm/chemistry , Fluorescence , Humans , Photobleaching , Sterols/chemical synthesis
2.
J Chem Phys ; 127(20): 204106, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-18052418

ABSTRACT

A procedure for the automatic construction of Born-Oppenheimer (BO) potential energy and molecular property surfaces in rectilinear normal coordinates is presented and its suitability and accuracy when combined with vibrational structure calculations are assessed. The procedure relies on a hierarchical n-mode representation of the BO potential energy or molecular property surface, where the n-mode term of the sequence of potentials/molecular properties includes only the couplings between n or less vibrational degrees of freedom. Each n-mode cut of the energy/molecular property surface is first evaluated in a grid of points with ab initio electronic structure methods. The ab initio data are then spline interpolated and a subsequent polynomial fitting provides an analytical semiglobal representation for use in vibrational structure programs. The implementation of the procedure is outlined and the accuracy of the method is tested on water and difluoromethane. Strategies for improving the proposed algorithm are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...