Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 37663-37680, 2024 May.
Article in English | MEDLINE | ID: mdl-38780849

ABSTRACT

Improving energy content and hydrophobic nature of woody biomass can be pursued through torrefaction. This gives torrefied biomass with a low bulk density, potentially increasing storage and transport costs. To overcome this issue, densifying the torrefied biomass is necessary. However, poor binding of particles makes densification challenging without using a binder. Therefore, the aim of this study was to investigate the physicochemical characteristics and techno-economic aspects of torrefied rubberwood biomass (TRWB) when pelletized using various cassava-based binders at different blending ratios. The selected binders included cassava starch (CS), cassava pulp (CP), and cassava chip (CC). Each binder at 5%, 10%, or 15% (wt.) was mixed with TRWB and water before pelletizing using a flat die machine. The results revealed that pelletizing TRWB with different cassava-based binders at various blending ratios influenced the physicochemical characteristics of the TRWB pellets, particularly dimensions, bulk density, fuel and atomic ratios, and energy content. The TRWB pellets demonstrated energy densities in the range of 7.95-11.39 GJ/m3, and their mechanical durability and fine content fell within acceptable ranges. The TRWB pellets maintained their shape during 120 min of water soaking, with water absorption levels varying by binder dose. The pelletizing ability, material, and energy costs of TRWB pellets depend on binder type and dose. CP can be applied as a binder for pelletizing torrefied rubberwood biomass. However, the mechanical durability of the product needs to be above the user requirement or standard.


Subject(s)
Biomass , Manihot , Wood , Manihot/chemistry , Wood/chemistry
2.
Environ Sci Pollut Res Int ; 30(60): 125889-125906, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010541

ABSTRACT

Production of coffee beans generates various types of biomass that can be applied as bioenergy for drying and roasting the beans. Thus, the aims of this study were to explore the characteristics of coffee biomass pellets (CBPs) produced from coffee cherry pulp (CCP), coffee parchment (CPM), and expired green coffee beans (ECB) by single and co-pelletization. The CBPs were then used to produce the synthesis gas in a downdraft gasifier, and the syngas properties were investigated for further heat applications. The results showed that single and co-pelletization of CCP and CPM performed well. The CBPs had good physiochemical properties in shape, size, and atomic ratios. The higher heating value and energy density of CBPs were 19.25-24.29 MJ/kg and 12.09-14.87 GJ/m3. The ash from CBPs was rich in K2O, CaO and MgO oxides, and the CPM ash had the lowest initial deformation temperature at 1136 °C. The ash samples from CBPs also had different slagging and fouling indexes. The syngas from CBPs mainly contained H2 (6.85-9.30%), CO (12.15-18.85%), and CO2 (10.85-13.75%). The heating value and tar concentration of syngas from CBPs were 3.24-4.32 MJ/m3 and 21.75-30.92 g/m3. The main chemical compounds in tar were styrene, phenol, caffeine, and pyrrole according to GC-MS. These results indicate that CCP and CPM have potential for pelletization and gasification to generate heat needed for coffee bean processing.


Subject(s)
Hot Temperature , Oxides , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...