Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Pharmacol Res ; 195: 106871, 2023 09.
Article in English | MEDLINE | ID: mdl-37506784

ABSTRACT

Circulating tumour-derived extracellular vesicles are supposed to contribute to the spreading of distant metastasis. In this study, we investigated the impact of circulating extracellular vesicles derived from tumour-endothelial cells (TEVs) in the expansion of the metastatic bulk. We focus on the role of immune cells in controlling this process using the 4T1 triple negative breast cancer (TNBC) syngeneic model. 4T1 cells were intravenously injected and exposed to circulating TEVs from day 7. The lung, spleen, and bone marrow (BM) were recovered and analysed. We demonstrated that circulating TEVs boost lung metastasis and angiogenesis. FACS and immunohistochemically analyses revealed a significant enrichment of Ly6G+/F4/80+/CD11b+ cells and Ly6G+/F4/80-/CD11b+ in the lung and in the spleen, while Ly6G+/F4/80-/CD11b+ in the BM, indicating the occurrence of a systemic and local immune suppression. TEV immune suppressive properties were further supported by the increased expression of PD-L1, PD-1, and iNOS in the tumour mass. In addition, in vitro experiments demonstrated an increase of CD11+ cells, PD-L1+ myeloid and cancer cells, upregulation of LAG3, CTLA4 and PD-1 in T-cells, release of ROS and NOS, and impaired T-cell-mediated cytotoxic effect in co-culture of TEVs-preconditioned PBMCs and cancer cells. Granulocyte-colony stimulating factor (G-CSF) level was increased in vivo, and was involved in reshaping the immune response. Mechanistically, we also found that mTOR enriched TEVs support G-CSF release and trigger the phosphorylation of the S6 (Ser235/236) mTOR downstream target. Overall, we provided evidence that circulating TEVs enriched in mTOR supported G-CSF release thereby granting tumour immune suppression and metastasis outgrowth.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Humans , Endothelial Cells , B7-H1 Antigen , Programmed Cell Death 1 Receptor , TOR Serine-Threonine Kinases , Granulocyte Colony-Stimulating Factor , Lung Neoplasms/drug therapy , Cell Line, Tumor
3.
Cancers (Basel) ; 14(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36010912

ABSTRACT

Tumour molecular annotation is mandatory for biomarker discovery and personalised approaches, particularly in triple-negative breast cancer (TNBC) lacking effective treatment options. In this study, the interleukin-3 receptor α (IL-3Rα) was investigated as a prognostic biomarker and therapeutic target in TNBC. IL-3Rα expression and patients' clinical and pathological features were retrospectively analysed in 421 TNBC patients. IL-3Rα was expressed in 69% human TNBC samples, and its expression was associated with nodal metastases (p = 0.026) and poor overall survival (hazard ratio = 1.50; 95% CI = 1.01-2.2; p = 0.04). The bioinformatics analysis on the Breast Invasive Carcinoma dataset of The Cancer Genome Atlas (TCGA) proved that IL-3Rα was highly expressed in TNBC compared with luminal breast cancers (p = 0.017, padj = 0.026). Functional studies demonstrated that IL-3Rα activation induced epithelial-to-endothelial and epithelial-to-mesenchymal transition, promoted large blood lacunae and lung metastasis formation, and increased programmed-cell death ligand-1 (PD-L1) in primary tumours and metastases. Based on the TCGA data, IL-3Rα, PD-L1, and EMT coding genes were proposed to discriminate against TNBC aggressiveness (AUC = 0.86 95% CI = 0.82-0.89). Overall, this study identified IL-3Rα as an additional novel biomarker of TNBC aggressiveness and provided the rationale to further investigate its relevance as a therapeutic target.

4.
Pharmacol Res ; 179: 106206, 2022 05.
Article in English | MEDLINE | ID: mdl-35398240

ABSTRACT

Antibody-based anti-cancer therapy is considered a successful approach to impair tumour progression. This study aimed to investigate the clinical impact of targeting the IL-3 signalling in the microenvironment of solid tumours. We intended to investigate whether the IL-3Rα blockade on tumour-derived endothelial cells (TEC) can modulate PD-L1 expression in tumour cells and peripheral blood mononuclear cells (PBMC) to reshape the anti-tumour immune response. Extracellular vesicles released by TEC after IL-3Rα blockade (aTEV) were used as the ultimate effectors of the antibody-based approach, while naive TEC-derived extracellular vesicles (nTEV) served as control. Firstly, we demonstrated that, either directly or indirectly via nTEV, IL-3 controls the expression of its receptor on TEC and PBMC respectively. Moreover, we found that nTEV, moulded by the autocrine secretion of IL-3, increased PD-L1 expression in myeloid cells both in vitro and in vivo. In addition, we found that nTEV-primed PBMC favour tumour cell growth (TEC and MDA-MB-231 cells), whereas PBMC-primed with aTEV still retain their anti-tumour properties. Isolated T-cells pre-conditioned with nTEV or aTEV and co-cultured with TEC or MDA-MB-231 cells have no effects, thereby sustaining the key role of myeloid cells in tumour immune editing. In vivo nTEV, but not aTEV, increased the expression of PD-L1 in primary tumours, lung and liver metastases. Finally, we demonstrated that the enrichment of miR-214 in aTEV impacts on PD-L1 expression in vivo. Overall, these data indicate that an approach based on IL-3Rα blockade in TEC rearranges EV cargo and may reshape the anti-tumour immune response.


Subject(s)
Extracellular Vesicles , Liver Neoplasms , MicroRNAs , B7-H1 Antigen/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Immunity , Interleukin-3/metabolism , Leukocytes, Mononuclear/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Tumor Microenvironment
5.
Chemistry ; 27(48): 12289-12293, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34160090

ABSTRACT

One possibility for the non-invasive imaging of encapsulated cell grafts is to label the lumen of cell embedding capsules with a redox-responsive probe, as an increased extracellular reducing potential can be considered as a marker of hypoxia-induced necrosis. A Gd(III)-HPDO3A-like chelate has been conjugated to glycol-chitosan through a redox-responsive disulphide bond to obtain a contrast agent for Magnetic Resonance Imaging (MRI). Such a compound can be interspersed with fibroblasts within the lumen of alginate-chitosan capsules. Increasing reducing conditions within the extracellular microenvironment lead to the reductive cleavage of the disulphide bond and to the release of gadolinium in the form of a low molecular weight, non-ionic chelate. The efflux of such chelate from capsules is readily detected by a decrease of contrast enhancement in T1 -weighted MR images.


Subject(s)
Chitosan , Alginates , Capsules , Contrast Media , Magnetic Resonance Imaging , Oxidation-Reduction
6.
Int J Mol Sci ; 21(20)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33080952

ABSTRACT

Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/ß-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/ß-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/ß-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/ß-catenin pathway is also discussed.


Subject(s)
Molecular Targeted Therapy , Neoplasms/metabolism , Neoplasms/therapy , Wnt Signaling Pathway , Animals , Cell Polarity , Extracellular Vesicles/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics
7.
Oncogenesis ; 9(10): 90, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33040091

ABSTRACT

The lack of approved targeted therapies highlights the need for new treatments for triple-negative breast cancer (TNBC) patients. Interleukin-3 (IL-3) acts as an autocrine factor for tumor-endothelial cells (TEC), and exerts pro-angiogenic paracrine action via extracellular vesicles (EVs). IL-3Rα blockade on TEC changes TEC-EV (anti-IL-3R-EV) microRNA (miR) content and promotes the regression of established vessels. As TEC is the doorway for "drug" entry into tumors, we aimed to assess whether IL-3R blockade on TEC impacts tumor progression via its unique EV cargo. First, the expression of IL-3Rα was evaluated in 27 human TNBC samples. It was noticed that, besides TEC and inflammatory cells, tumor cells from 55.5% of the human TNBC samples expressed IL-3Rα. Using human TNBC cell lines for in vitro studies, we found that, unlike native TEC-EVs (nEVs), anti-IL-3R-EVs increase apoptosis and reduced cell viability and migration. In vivo, anti-IL-3R-EV treatment induced vessel regression in established tumors formed of MDA-MB-231 cells, decreased Vimentin, ß-catenin, and TWIST1 expression, almost abolished liver and lung metastases from primary tumors, and reduced lung metastasis generated via the intravenous injection of MDA-MB-231 cells. nEVs depleted of miR-24-3p (antago-miR-24-3p-EVs) were effective as anti-IL-3R-EVs in downregulating TWIST1 and reducing metastatic lesions in vivo. Consistent with network analyses of miR-24-3p gene targeting, anti-IL-3R-EVs and antago-miR-24-3p-EVs upregulate SPRY2 in MDA-MB-231 cells. Finally, SPRY2 silencing prevented anti-IL-3R-EV and antago-miR-24-3p-EV-mediated apoptotic cues.Overall, these data provide the first evidence that IL-3Rα is highly expressed in TNBC cells, TEC, and inflammatory cells, and that IL-3Rα blockade on TEC impacts tumor progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...