Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38591380

ABSTRACT

In this study, organosilicon compounds were used as modifiers of filaments constituting building materials for 3D printing technology. Polymethylhydrosiloxane underwent a hydrosilylation reaction with styrene, octadecene, and vinyltrimethoxysilane to produce new di- or tri-functional derivatives with varying ratios of olefins. These compounds were then mixed with silica and incorporated into the ABS matrix using standard processing methods. The resulting systems exhibited changes in their physicochemical and mechanical characteristics. Several of the obtained composites (e.g., modified with VT:6STYR) had an increase in the contact angle of over 20° resulting in a hydrophobic surface. The addition of modifiers also prevented a decrease in rheological parameters regardless of the amount of filler added. In addition, comprehensive tests of the thermal decomposition of the obtained composites were performed and an attempt was made to precisely characterize the decomposition of ABS using FT-IR and optical microscopy, which allowed us to determine the impact of individual groups on the thermal stability of the system.

2.
Polymers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080643

ABSTRACT

In this study, a series of cage siloxanes (CS), e.g., three polyhedral oligomeric silsesquioxanes (SSQs) and one spherosilicate (SS) derivative, were applied as functional additives for the preparation of poly(lactic acid)-based (PLA) nanofibrillar membranes with an electrospinning technique utilizing an efficient spinning wire electrode setup. The impact of the additives' structure, chemistry, and electrospinning parameters on the obtained materials' morphology (scanning electron microscopy) and physicochemical (thermogravimetry, differential scanning calorimetry, contact angle analysis, air flow analysis) properties is discussed. It is presented that applying organosilicon additives may extend the already tuneable properties of the membranes produced by electrospinning performed under different conditions and that they enable to obtain nanofibres of smaller diameter, which in turn increases the membrane porosity. Furthermore, the solvent-assisted electrospinning method allowed for unparalleled mixing of the PLA matrix with the CS additives, as no traces of free additives were visible on the membranes by scanning electron microscopy (SEM) imaging. The resulting membranes can be utilized as filter materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...