Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502413

ABSTRACT

Reactive astrocytes play an important role in the development of Alzheimer's disease (AD). Here, we aimed to investigate the temporospatial relationships among monoamine oxidase-B, tau and amyloid-ß (Aß), translocator protein, and glucose metabolism by using multitracer imaging in AD transgenic mouse models. Positron emission tomography (PET) imaging with [18F]SMBT-1 (monoamine oxidase-B), [18F]florbetapir (Aß), [18F]PM-PBB3 (tau), [18F]fluorodeoxyglucose (FDG), and [18F]DPA-714 (translocator protein) was carried out in 5- and 10-month-old APP/PS1, 11-month-old 3×Tg mice, and aged-matched wild-type mice. The brain regional referenced standard uptake value (SUVR) was computed with the cerebellum as the reference region. Immunofluorescence staining was performed on mouse brain tissue slices. [18F]SMBT-1 and [18F]florbetapir SUVRs were greater in the cortex and hippocampus of 10-month-old APP/PS1 mice than in those of 5-month-old APP/PS1 mice and wild-type mice. No significant difference in the regional [18F]FDG or [18F]DPA-714 SUVRs was observed in the brains of 5- or 10-month-old APP/PS1 mice or wild-type mice. No significant difference in the SUVRs of any tracer was observed between 11-month-old 3×Tg mice and age-matched wild-type mice. A positive correlation between the SUVRs of [18F]florbetapir and [18F]DPA-714 in the cortex and hippocampus was observed among the transgenic mice. Immunostaining validated the distribution of MAO-B and limited Aß and tau pathology in 11-month-old 3×Tg mice; and Aß deposits in brain tissue from 10-month-old APP/PS1 mice. In summary, these findings provide in vivo evidence that an increase in astrocyte [18F]SMBT-1 accompanies Aß accumulation in APP/PS1 models of AD amyloidosis.

2.
Life Sci ; 321: 121593, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934970

ABSTRACT

AIMS: Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aß) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aß. MATERIALS AND METHODS: Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAß mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aß in brain tissue slices from pR5, arcAß and non-transgenic mice. KEY FINDINGS: pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAß mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAß mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aß plaques in arcAß mice. SIGNIFICANCE: We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAß mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aß pathologies.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aquaporin 4 , tau Proteins , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism , Brain/metabolism , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid/pathology , tau Proteins/metabolism
3.
Eur J Nucl Med Mol Imaging ; 49(7): 2137-2152, 2022 06.
Article in English | MEDLINE | ID: mdl-35128565

ABSTRACT

PURPOSE: Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS: We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 µm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS: PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS: We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 µm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Positron-Emission Tomography/methods , Tauopathies/metabolism , tau Proteins/metabolism
4.
Biol Chem ; 402(4): 481-499, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33938178

ABSTRACT

Proteolytic processing of the amyloid precursor protein (APP) releases the APP intracellular domain (AICD) from the membrane. Bound to the APP adaptor protein Fe65 and the lysine acetyltransferase (KAT) Tip60, AICD translocates to the nucleus. Here, the complex forms spherical condensates at sites of endogenous target genes, termed AFT spots (AICD-Fe65-Tip60). We show that loss of Tip60 KAT activity prevents autoacetylation, reduces binding of Fe65 and abolishes Fe65-mediated stabilization of Tip60. Autoacetylation is a prerequisite for AFT spot formation, with KAT-deficient Tip60 retained together with Fe65 in speckles. We identify lysine residues 204 and 701 of Fe65 as acetylation targets of Tip60. We do not detect acetylation of AICD. Mutation of Fe65 K204 and K701 to glutamine, mimicking acetylation-induced charge neutralization, increases the transcriptional activity of Fe65 whereas Tip60 inhibition reduces it. The lysine deacetylase (KDAC) class III Sirt1 deacetylates Fe65 and pharmacological modulation of Sirt1 activity regulates Fe65 transcriptional activity. A second acetylation/deacetylation cycle, conducted by CBP and class I/II KDACs at different lysine residues, regulates stability of Fe65. This is the first report describing a role for acetylation in the regulation of Fe65 transcriptional activity, with Tip60 being the only KAT tested that supports AFT spot formation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Protein Precursor/metabolism , Lysine Acetyltransferases/metabolism , Acetylation , Cells, Cultured , Humans , Transcriptional Activation
5.
Mol Neurobiol ; 58(2): 668-688, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33009641

ABSTRACT

The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Heparin-binding EGF-like Growth Factor/metabolism , MAP Kinase Signaling System , Neurites/metabolism , Neurogenesis , Animals , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , HeLa Cells , Humans , Ligands , Models, Biological , Protein Binding , Protein Precursors/metabolism , Protein Processing, Post-Translational , Rats, Wistar , Saccharomyces cerevisiae/metabolism
6.
J Cell Sci ; 133(17)2020 09 08.
Article in English | MEDLINE | ID: mdl-32843577

ABSTRACT

The amyloid precursor protein (APP), a central molecule in Alzheimer's disease (AD), has physiological roles in cell adhesion and signaling, migration, neurite outgrowth and synaptogenesis. Intracellular adapter proteins mediate the function of transmembrane proteins. Fe65 (also known as APBB1) is a major APP-binding protein. Regulated intramembrane proteolysis (RIP) by γ-secretase releases the APP intracellular domain (AICD), together with the interacting proteins, from the membrane. We studied the impact of the Fe65 family (Fe65, and its homologs Fe65L1 and Fe65L2, also known as APBB2 and APBB3, respectively) on the nuclear signaling function of the AICD. All Fe65 family members increased amyloidogenic processing of APP, generating higher levels of ß-cleaved APP stubs and AICD. However, Fe65 was the only family member supporting AICD translocation to nuclear spots and its transcriptional activity. Using a recently established transcription assay, we dissected the transcriptional activity of Fe65 and provide strong evidence that Fe65 represents a transcription factor. We show that Fe65 relies on the lysine acetyltransferase Tip60 (also known as KAT5) for nuclear translocation. Furthermore, inhibition of APP cleavage reduces nuclear Tip60 levels, but this does not occur in Fe65-knockout cells. The rate of APP cleavage therefore regulates the nuclear translocation of AICD-Fe65-Tip60 (AFT) complexes, to promote transcription by Fe65.


Subject(s)
Amyloid beta-Protein Precursor , Nuclear Proteins , Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor/genetics , Cell Nucleus , Nerve Tissue Proteins/genetics
7.
Biol Chem ; 400(9): 1191-1203, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31120852

ABSTRACT

Signaling pathways that originate at the plasma membrane, including regulated intramembrane proteolysis (RIP), enable extracellular cues to control transcription. We modified the yeast Gal4 transcription system to study the nuclear translocation of transcriptionally active complexes using the fluorescent protein citrine (Cit) as a reporter. This enabled highly sensitive quantitative analysis of transcription in situ at the single cell level. The Gal4/UAS-Cit transcription assay displayed a sigmoidal response limited by the number of integrated reporter cassettes. We validated the assay by analyzing nuclear translocation of the amyloid precursor protein (APP) intracellular domain (AICD) and confirmed the requirement of Fe65 for nuclear translocation of AICD. In addition to the strong on-off effects on transcriptional activity, the results of this assay establish that phosphorylation modifies nuclear signaling. The Y682F mutation in APP showed the strongest increase in Cit expression, underscoring its role in regulating Fe65 binding. Together, we established a highly sensitive fluorescent protein-based assay that can monitor transcriptional activity at the single cell level and demonstrate that AICD phosphorylation affects Fe65 nuclear activity. This assay also introduces a platform for future single cell-based drug screening methods for nuclear translocation.


Subject(s)
Nuclear Proteins/metabolism , Transcription, Genetic , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Fluorescence , Genetic Vectors , HEK293 Cells , Humans , Lentivirus/genetics , Mutation , Protein Transport , Signal Transduction
8.
Front Mol Neurosci ; 10: 140, 2017.
Article in English | MEDLINE | ID: mdl-28553201

ABSTRACT

Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

9.
Swiss Med Wkly ; 145: w14233, 2015.
Article in English | MEDLINE | ID: mdl-26701700

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause for dementia, which affects approximately 120 thousand people in Switzerland and 35 million worldwide. Aging is a major risk factor for developing AD and thus, as our societies are growing older, we face great challenges to find treatment strategies. The disease is characterised by loss of memory, deposition of extracellular amyloid plaques containing Aß peptides and intraneuronal tangles of the tau protein. To date, there is no effective treatment and the cause of the disease is still debated. The Schweizerische Alzheimervereinigung states that we need "continuous manifold research" into all possible causes of AD to find a cure for this disease. Fitting this proposition, a recent publication by Xia et al. (2015) described a novel mouse model that for the first time reproduces cortical neuron death as observed in human AD cases. At the same time, this publication questions the major theory of AD pathogenesis and points towards different treatment avenues that should be followed to find a cure for AD.


Subject(s)
Aging , Alzheimer Disease/etiology , Amyloid beta-Protein Precursor/metabolism , Presenilins/metabolism , Alzheimer Disease/epidemiology , Animals , Disease Models, Animal , Humans , Mice , Neurons/metabolism , Switzerland/epidemiology
10.
J Neurosci ; 34(41): 13780-9, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25297104

ABSTRACT

Impairment of brain functional connectivity (FC) is thought to be an early event occurring in diseases with cerebral amyloidosis, such as Alzheimer's disease. Regions sustaining altered functional networks have been shown to colocalize with regions marked with amyloid plaques burden suggesting a strong link between FC and amyloidosis. Whether the decline in FC precedes amyloid plaque deposition or is a consequence thereof is currently unknown. The sequence of events during early stages of the disease is difficult to capture in humans due to the difficulties in providing an early diagnosis and also in view of the heterogeneity among patients. Transgenic mouse lines overexpressing amyloid precursor proteins develop cerebral amyloidosis and constitute an attractive model system for studying the relationship between plaque and functional changes. In this study, ArcAß transgenic and wild-type mice were imaged using resting-state fMRI methods across their life-span in a cross-sectional design to analyze changes in FC in relation to the pathology. Transgenic mice show compromised development of FC during the first months of postnatal life compared with wild-type animals, resulting in functional impairments that affect in particular the sensory-motor cortex already in preplaque stage. These functional alterations were accompanied by structural changes as reflected by reduced fractional anisotropy values, as derived from diffusion tensor imaging. Our results suggest cerebral amyloidosis in mice is preceded by impairment of neuronal networks and white matter structures. FC analysis in mice is an attractive tool for studying the implications of impaired neuronal networks in models of cerebral amyloid pathology.


Subject(s)
Amyloidosis/pathology , Neural Pathways/physiology , White Matter/anatomy & histology , Aging/physiology , Alzheimer Disease/pathology , Amyloidosis/genetics , Animals , Anisotropy , Female , Genotype , Humans , Male , Mice , Mice, Transgenic , Nerve Net/pathology , White Matter/growth & development
11.
J Alzheimers Dis ; 42(4): 1415-33, 2014.
Article in English | MEDLINE | ID: mdl-25024339

ABSTRACT

Proteolytic processing of the amyloid-ß protein precursor (AßPP) occurs via alternative pathways, culminating with the production of the AßPP intracellular domain (AICD). AICD can translocate to the nucleus and regulate transcription, but its activity is modulated by interactions with other proteins. In the nucleus, AICD, FE65, and Tip60 associate into AFT complexes, which are targeted to nuclear spots which correspond to transcription factories. Here we report that RanBP9 interacts with the cytoplasmic domain of AßPP, through the NPXY internalization motif. Moreover, RanBP9 interaction with Tip60 is also described. The RanBP9-Tip60 interaction dramatically relocated RanBP9 from a widespread cellular distribution to nuclear speckles. AßPP processing is a central aspect in determining the protein's function and that of its resulting proteolytic fragments, among them AICD. The latter results from the amyloidogenic pathway and is the peptidic species predominantly involved in nuclear signaling. Of note RanBP9 transfection was previously demonstrated to increase amyloid-ß generation. Here we show that RanBP9 relocates AICD to the Tip60-enriched nuclear speckles, and prevented the formation of nuclear spots formation, having therefore a negative effect on AICD mediated nuclear signaling and consequently AFT complex formation. Furthermore, by transfecting cells with increasing amounts of RanBP9, the expression of AICD-regulated genes, including AßPP itself, was reduced. Given the data presented, one can deduce that RanBP9 has an inhibitory regulatory effect on AICD-mediated transcription and the effect is mediated by relocating AICD away from transcription factories.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Protein Precursor/metabolism , Cytoskeletal Proteins/metabolism , Histone Acetyltransferases/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Cell Nucleus/metabolism , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Immunohistochemistry , Lysine Acetyltransferase 5 , Microscopy, Confocal , Nerve Tissue Proteins/metabolism , Saccharomyces cerevisiae , Transcription, Genetic/physiology , Two-Hybrid System Techniques
12.
PLoS One ; 8(9): e76094, 2013.
Article in English | MEDLINE | ID: mdl-24086696

ABSTRACT

BACKGROUND: The amyloid precursor protein (APP) intracellular domain (AICD) is released from full-length APP upon sequential cleavage by either α- or ß-secretase followed by γ-secretase. Together with the adaptor protein Fe65 and the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes) that function in transcriptional regulation. OBJECTIVE: To develop a medium-throughput machine-based assay for visualization and quantification of AFT complex formation in cultured cells. METHODS: We used cotransfection of bimolecular fluorescence complementation (BiFC) fusion constructs of APP and Tip60 for analysis of subcellular localization by confocal microscopy and quantification by flow cytometry (FC). RESULTS: Our novel BiFC-constructs show a nuclear localization of AFT complexes that is identical to conventional fluorescence-tagged constructs. Production of the BiFC signal is dependent on the adaptor protein Fe65 resulting in fluorescence complementation only after Fe65-mediated nuclear translocation of AICD and interaction with Tip60. We applied the AFT-BiFC system to show that the Swedish APP familial Alzheimer's disease mutation increases AFT complex formation, consistent with the notion that AICD mediated nuclear signaling mainly occurs following APP processing through the amyloidogenic ß-secretase pathway. Next, we studied the impact of posttranslational modifications of AICD on AFT complex formation. Mutation of tyrosine 682 in the YENPTY motif of AICD to phenylalanine prevents phosphorylation resulting in increased nuclear AFT-BiFC signals. This is consistent with the negative impact of tyrosine phosphorylation on Fe65 binding to AICD. Finally, we studied the effect of oxidative stress. Our data shows that oxidative stress, at a level that also causes cell death, leads to a reduction in AFT-BiFC signals. CONCLUSION: We established a new method for visualization and FC quantification of the interaction between AICD, Fe65 and Tip60 in the nucleus based on BiFC. It enables flow cytometric analysis of AICD nuclear signaling and is characterized by scalability and low background fluorescence.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Cell Nucleus/physiology , Gene Expression Regulation/genetics , Multiprotein Complexes/genetics , Signal Transduction/physiology , Amyloid Precursor Protein Secretases/metabolism , Flow Cytometry , Fluorescence , Gene Expression Regulation/physiology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Lysine Acetyltransferase 5 , Microscopy, Confocal , Multiprotein Complexes/physiology , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Oxidative Stress/physiology , Protein Structure, Tertiary/genetics
13.
PLoS One ; 8(7): e69363, 2013.
Article in English | MEDLINE | ID: mdl-23874953

ABSTRACT

The amyloid precursor protein (APP) as well as its homologues, APP-like protein 1 and 2 (APLP1 and APLP2), are cleaved by α-, ß-, and γ-secretases, resulting in the release of their intracellular domains (ICDs). We have shown that the APP intracellular domain (AICD) is transported to the nucleus by Fe65 where they jointly bind the histone acetyltransferase Tip60 and localize to spherical nuclear complexes (AFT complexes), which are thought to be sites of transcription. We have now analyzed the subcellular localization and turnover of the APP family members. Similarly to AICD, the ICD of APLP2 localizes to spherical nuclear complexes together with Fe65 and Tip60. In contrast, the ICD of APLP1, despite binding to Fe65, does not translocate to the nucleus. In addition, APLP1 predominantly localizes to the plasma membrane, whereas APP and APLP2 are detected in vesicular structures. APLP1 also demonstrates a much slower turnover of the full-length protein compared to APP and APLP2. We further show that the ICDs of all APP family members are degraded by the proteasome and that the N-terminal amino acids of ICDs determine ICD degradation rate. Together, our results suggest that different nuclear signaling capabilities of APP family members are due to different rates of full-length protein processing and ICD proteasomal degradation. Our results provide evidence in support of a common nuclear signaling function for APP and APLP2 that is absent in APLP1, but suggest that APLP1 has a regulatory role in the nuclear translocation of APP family ICDs due to the sequestration of Fe65.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Cell Nucleus/metabolism , Nerve Tissue Proteins/metabolism , Protein Structure, Tertiary/physiology , Signal Transduction/physiology , Active Transport, Cell Nucleus/physiology , Blotting, Western , Fluorescence Resonance Energy Transfer , HEK293 Cells , Histone Acetyltransferases/metabolism , Humans , Immunohistochemistry , Lysine Acetyltransferase 5 , Microscopy, Confocal , Nuclear Proteins/metabolism , Protein Structure, Tertiary/genetics , Signal Transduction/genetics
14.
J Neurosci ; 33(5): 1915-26, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23365231

ABSTRACT

Presenilin (PSEN) 1 and 2 are the catalytic components of the γ-secretase complex, which cleaves a variety of proteins, including the amyloid precursor protein (APP). Proteolysis of APP leads to the formation of the APP intracellular domain (AICD) and amyloid ß that is crucially involved in the pathogenesis of Alzheimer's disease. Prolyl-4-hydroxylase-domain (PHD) proteins regulate the hypoxia-inducible factors (HIFs), the master regulators of the hypoxic response. We previously identified the FK506 binding protein 38 (FKBP38) as a negative regulator of PHD2. Genetic ablation of PSEN1/2 has been shown to increase FKBP38 protein levels. Therefore, we investigated the role of PSEN1/2 in the oxygen sensing pathway using a variety of genetically modified cell and mouse lines. Increased FKBP38 protein levels and decreased PHD2 protein levels were found in PSEN1/2-deficient mouse embryonic fibroblasts and in the cortex of forebrain-specific PSEN1/2 conditional double knock-out mice. Hypoxic HIF-1α protein accumulation and transcriptional activity were decreased, despite reduced PHD2 protein levels. Proteolytic γ-secretase function of PSEN1/2 was needed for proper HIF activation. Intriguingly, PSEN1/2 mutations identified in Alzheimer patients differentially affected the hypoxic response, involving the generation of AICD. Together, our results suggest a direct role for PSEN in the regulation of the oxygen sensing pathway via the APP/AICD cleavage cascade.


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Hypoxia-Inducible Factor 1/metabolism , Mutation , Neurons/metabolism , Presenilin-1/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebral Cortex/metabolism , Fibroblasts/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1/genetics , Mice , Presenilin-1/metabolism , Transcriptional Activation
15.
J Proteome Res ; 11(8): 4075-90, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22731840

ABSTRACT

Knowledge of the protein networks interacting with the amyloid precursor protein (APP) in vivo can shed light on the physiological function of APP. To date, most proteins interacting with the APP intracellular domain (AICD) have been identified by Yeast Two Hybrid screens which only detect direct interaction partners. We used a proteomics-based approach by biochemically isolating tagged APP from the brains of transgenic mice and subjecting the affinity-purified complex to mass spectrometric (MS) analysis. Using two different quantitative MS approaches, we compared the protein composition of affinity-purified samples isolated from wild-type mice versus transgenic mice expressing tagged APP. This enabled us to assess truly enriched proteins in the transgenic sample and yielded an overlapping set of proteins containing the major proteins involved in synaptic vesicle endo- and exocytosis. Confocal microscopy analyses of cotransfected primary neurons showed colocalization of APP with synaptic vesicle proteins in vesicular structures throughout the neurites. We analyzed the interaction of APP with these proteins using pulldown experiments from transgenic mice or cotransfected cells followed by Western blotting. Synaptotagmin-1 (Stg1), a resident synaptic vesicle protein, was found to directly bind to APP. We fused Citrine and Cerulean to APP and the candidate proteins and measured fluorescence resonance energy transfer (FRET) in differentiated SH-SY5Y cells. Differentially tagged APPs showed clear sensitized FRET emission, in line with the described dimerization of APP. Among the candidate APP-interacting proteins, again only Stg1 was in close proximity to APP. Our results strongly argue for a function of APP in synaptic vesicle turnover in vivo. Thus, in addition to the APP cleavage product Aß, which influences synaptic transmission at the postsynapse, APP interacts with the calcium sensor of synaptic vesicles and might thus play a role in the regulation of synaptic vesicle exocytosis.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Protein Interaction Maps , Proteome/metabolism , Synaptic Vesicles/metabolism , Synaptotagmin I/metabolism , Amyloid beta-Protein Precursor/isolation & purification , Animals , Chromatography, Affinity , Exocytosis , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Primary Cell Culture , Protein Interaction Mapping , Protein Transport , Proteome/isolation & purification
16.
Curr Alzheimer Res ; 9(2): 200-16, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21605035

ABSTRACT

Altered proteolytic processing of the ß-amyloid precursor protein (APP) is a central event in familial and sporadic Alzheimer's disease (AD). In a process termed regulated intramembrane proteolysis (RIP), APP first undergoes ectodomain shedding executed either by α- secretases at the plasma membrane or by ß-secretase in the endosomal compartment. The remaining membrane-anchored stubs are cleaved within the membrane plane by the γ-secretase complex, releasing the APP intracellular domain (AICD) into the cytosol and leading to the generation of the Aß peptide in the amyloidogenic pathway that is initiated by ß-secretase. The Aß peptides aggregate to form soluble oligomers and finally deposit into amyloid plaques that are a hallmark of AD. Recent evidence indicates a role for Aß oligomers in regulating synaptic plasticity with excess amounts of oligomers disrupting synaptic function. The amyloid cascade hypothesis of AD is centered on the Aß peptide, the APP fragment that has been most intensely studied, while other cleavage products have been largely neglected. The secreted ectodomain generated after α-cleavage in the non-amyloidogenic pathway has neurotrophic and neuroproliferative activities, thus opposing the neurotoxicity observed with high concentrations of Aß. Further, in analogy to many other membrane proteins that are subject to RIP, AICD can translocate to the nucleus to regulate transcription. Many RIP substrates are localized to the synapse and thus could convey a direct signal from the synapse to the nucleus upon cleavage. Evidence indicates that only the amyloidogenic pathway generates AICD capable of nuclear signaling, due to the subcellular compartmentalization of APP processing. In aging and sporadic AD there is an increase in ß-secretase levels and activity generating more Aß peptides and concomitantly leading to an increase in AICD nuclear signaling. In this review, I summarize the current knowledge on AICD nuclear signaling and propose mechanisms to explain how this physiological function of APP might impact the pathology seen in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Intracellular Fluid/metabolism , Signal Transduction/physiology , Amyloid beta-Protein Precursor/chemistry , Animals , Humans , Protein Structure, Tertiary
17.
J Alzheimers Dis ; 19(4): 1339-57, 2010.
Article in English | MEDLINE | ID: mdl-20061602

ABSTRACT

Reelin is a large extracellular glycoprotein required for proper neuronal positioning during development. In the adult brain, Reelin plays a crucial modulatory role in the induction of synaptic plasticity and successful formation of long-term memory. Recently, alterations in Reelin-mediated signaling have been suggested to contribute to neuronal dysfunction associated with Alzheimer's disease (AD). We previously reported that aging in several species is characterized by a decline in Reelin-expressing interneurons and concomitant accumulation in amyloid-like plaques in the hippocampal formation, significantly correlating with cognitive impairments. In transgenic AD mice, we detected Reelin in oligomeric amyloid-beta aggregates and in tight association with fibrillary plaques. Here, we used immunohistochemistry at the light and electron microscopy level to characterize further the morphology, temporal and spatial progression, as well as the potential of Reelin-positive plaques to sequester murine amyloid-beta peptides in wild-type mice. We developed a new immunohistochemical protocol involving a stringent protease pretreatment which markedly enhanced Reelin-immunoreactivity and allowed specific detection of variable shapes of murine anti-amyloid-beta protein precursor-immunoreactivity in plaques in the hippocampus, likely representing N-terminal fragments and amyloid-beta species. Ultrastructural investigations confirmed the presence of Reelin in extracellular space, somata of interneurons in young and aged wild-type mice. In aged mice, Reelin- and amyloid-beta-immunoreactivity was detected in extracellular, spherical deposits, likely representing small intermediates or fragments of amyloid fibrils. Our results suggest that Reelin itself aggregates into abnormal oligomeric or protofibrillary deposits during aging, potentially creating a precursor condition for fibrillary amyloid-beta plaque formation.


Subject(s)
Aging/physiology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics , Hippocampus/metabolism , Hippocampus/pathology , Nerve Tissue Proteins/genetics , Peptide Hydrolases/metabolism , Serine Endopeptidases/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Disease Models, Animal , Mice , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Reelin Protein
18.
Neurobiol Aging ; 31(1): 58-73, 2010 Jan.
Article in English | MEDLINE | ID: mdl-18403052

ABSTRACT

The beta-amyloid precursor protein (APP) plays a major role in Alzheimer's disease. The APP intracellular domain (AICD), together with Fe65 and Tip60, localizes to spherical nuclear AFT complexes, which may represent sites of transcription. Despite a lack of co-localization with several described nuclear compartments, we have identified a close apposition between AFT complexes and splicing speckles, Cajal bodies and PML bodies. Live imaging revealed that AFT complexes were highly mobile within nuclei and following pharmacological inhibition of transcription fused into larger assemblies. We have previously shown that AICD regulates the expression of its own precursor APP. In support of our earlier findings, transfection of APP promoter plasmids as substrates resulted in cytosolic AFT complex formation at labeled APP promoter plasmids. In addition, identification of chromosomal APP or KAI1 gene loci by fluorescence in situ hybridization showed their close association with nuclear AFT complexes. The transcriptional activator Notch intracellular domain (NICD) localized to the same nuclear spots as occupied by AFT complexes suggesting that these nuclear compartments correspond to transcription factories. Fe65 and Tip60 also co-localized with APP in the neurites of primary neurons. Pre-assembled AFT complexes may serve to assist fast nuclear signaling upon endoproteolytic APP cleavage.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Cell Nucleus/metabolism , Neurons/metabolism , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Brain/physiopathology , Cell Line , Cell Nucleus/genetics , Cell Nucleus/ultrastructure , Cells, Cultured , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , In Situ Hybridization, Fluorescence , Lysine Acetyltransferase 5 , Macromolecular Substances/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plasmids , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary/physiology , Receptors, Notch/chemistry , Signal Transduction/physiology , Trans-Activators , Transcriptional Activation/physiology
19.
J Cell Sci ; 122(Pt 20): 3703-14, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19773363

ABSTRACT

Proteolytic processing of the amyloid precursor protein (APP) occurs via two alternative pathways, localized to different subcellular compartments, which result in functionally distinct outcomes. Cleavage by a beta-gamma sequence generates the Abeta peptide that plays a central role in Alzheimer's disease. In the case of alpha-gamma cleavage, a secreted neurotrophic molecule is generated and the Abeta peptide cleaved and destroyed. In both cases, a cytosolic APP intracellular domain (AICD) is generated. We have previously shown that coexpression of APP with the APP-binding protein Fe65 and the histone acetyltransferase Tip60 results in the formation of nuclear complexes (termed AFT complexes), which localize to transcription sites. We now show that blocking endocytosis or the pharmacological or genetic inhibition of the endosomal beta-cleavage pathway reduces translocation of AICD to these nuclear AFT complexes. AICD signaling further depends on active transport along microtubules and can be modulated by interference with both anterograde and retrograde transport systems. Nuclear signaling by endogenous AICD in primary neurons could similarly be blocked by inhibiting beta-cleavage but not by alpha-cleavage inhibition. This suggests that amyloidogenic cleavage, despite representing the minor cleavage pathway of APP, is predominantly responsible for AICD-mediated nuclear signaling.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Amyloid/metabolism , Cell Nucleus/metabolism , Intracellular Space/metabolism , Protein Processing, Post-Translational , Signal Transduction , Active Transport, Cell Nucleus , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cell Line , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Gene Knockout Techniques , Humans , Mice , Mice, Inbred C57BL , Models, Biological , Protein Transport
20.
J Biol Chem ; 284(17): 11738-47, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19213735

ABSTRACT

ADAM10 is involved in the proteolytic processing and shedding of proteins such as the amyloid precursor protein (APP), cadherins, and the Notch receptors, thereby initiating the regulated intramembrane proteolysis (RIP) of these proteins. Here, we demonstrate that the sheddase ADAM10 is also subject to RIP. We identify ADAM9 and -15 as the proteases responsible for releasing the ADAM10 ectodomain, and Presenilin/gamma-Secretase as the protease responsible for the release of the ADAM10 intracellular domain (ICD). This domain then translocates to the nucleus and localizes to nuclear speckles, thought to be involved in gene regulation. Thus, ADAM10 performs a dual role in cells, as a metalloprotease when it is membrane-bound, and as a potential signaling protein once cleaved by ADAM9/15 and the gamma-Secretase.


Subject(s)
ADAM Proteins/metabolism , ADAM Proteins/physiology , Amyloid Precursor Protein Secretases/metabolism , Gene Expression Regulation, Enzymologic , Membrane Proteins/metabolism , Membrane Proteins/physiology , Receptors, Notch/metabolism , ADAM10 Protein , Amyloid Precursor Protein Secretases/physiology , Animals , Cell Nucleus/metabolism , Mice , Microscopy, Fluorescence , Presenilins/metabolism , Protein Structure, Tertiary , Signal Transduction , Subcellular Fractions/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...