Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(2): 026403, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296932

ABSTRACT

Building on previous developments [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev. B 99, 035120 (2019); PRBMDO2469-995010.1103/PhysRevB.99.035120A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlancPhys. Rev. B101, 125109 (2020); PRBMDO2469-995010.1103/PhysRevB.101.125109A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlancPhys. Rev. B102, 045115 (2020)PRBMDO2469-995010.1103/PhysRevB.102.045115, B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998)PRBMDO0163-182910.1103/PhysRevB.57.2108, J. Vicicevic and M. Ferrero, Phys. Rev. B 101, 075113 (2020)PRBMDO2469-995010.1103/PhysRevB.101.075113], we show that the diagrammatic Monte Carlo technique allows us to compute finite-temperature response functions directly on the real-frequency axis within any field-theoretical formulation of the interacting fermion problem. There are no limitations on the type and nature of the system's action or whether partial summation and self-consistent treatment of certain diagram classes are used. In particular, by eliminating the need for numerical analytic continuation from a Matsubara representation, our scheme allows us to study spectral densities of arbitrary complexity with controlled accuracy in models with frequency-dependent effective interactions. For illustrative purposes we consider the problem of the plasmon linewidth in a homogeneous electron gas (jellium).

2.
Proc Natl Acad Sci U S A ; 114(47): 12430-12435, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29114049

ABSTRACT

Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.

3.
Phys Rev Lett ; 116(22): 225302, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27314723

ABSTRACT

We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.

4.
Phys Rev Lett ; 110(14): 147001, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-25167025

ABSTRACT

We investigate the high-energy magnetic excitation spectrum of the high-T(c) cuprate superconductor Bi(2)Sr(2)CaCu(2)O(8+δ) (Bi-2212) using Cu L(3) edge resonant inelastic x-ray scattering. Broad, dispersive magnetic excitations are observed, with a zone boundary energy of ∼ 300 meV and a weak dependence on doping. These excitations are strikingly similar to the bosons proposed to explain the high-energy "kink" observed in photoemission. A phenomenological calculation of the spin response, based on a parametrization of the the angle-resolved photoemission spectroscopy derived electronic structure and Yang-Rice-Zhang quasiparticles, provides a reasonable prediction of the energy dispersion of the observed magnetic excitations. These results indicate a possible unified framework to reconcile the magnetic and electronic properties of the cuprates and we discuss the advantages and disadvantages of such an approach.

5.
Phys Rev Lett ; 96(8): 086407, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16606208

ABSTRACT

We analyze a model of two-leg Hubbard ladders weakly coupled by interladder tunneling. At half filling a semimetallic state with small Fermi pockets is induced beyond a threshold tunneling strength. The sign changes in the single electron Green's function relevant for the Luttinger sum rule now take place at surfaces with both zeros and infinities with important consequences for the interpretation of angle-resolved photoemission spectroscopy experiments. Residual interactions between electron and holelike quasiparticles cause a transition to long range order at low temperatures. The theory can be extended to small doping leading to superconducting order.

6.
Phys Rev Lett ; 90(23): 233004, 2003 Jun 13.
Article in English | MEDLINE | ID: mdl-12857256

ABSTRACT

In a photoionization spectrum in which there is no excitation of the discrete states, but only the underlying continuum, we have observed resonances which appear as symmetric peaks, not the commonly expected window resonances. Furthermore, since the excitation to the unperturbed continuum vanishes, the cross section expected from Fano's configuration interaction theory is identically zero. This shortcoming is removed by the explicit introduction of the phase shifted continuum, which demonstrates that the shape of a resonance, by itself, provides no information about the relative excitation amplitudes to the discrete state and the continuum.

7.
Phys Rev Lett ; 87(23): 236801, 2001 Dec 03.
Article in English | MEDLINE | ID: mdl-11736468

ABSTRACT

Recent experiments have probed quantum dots through transport measurements in the regime where they are described by a two lead Anderson model. In this paper we develop a new method to analytically compute the corresponding transport properties. This is done by using the exact solvability of the Anderson Hamiltonian, together with a generalization of the Landauer-Büttiker approach to integrable systems. In the Kondo regime, we compute analytically for the first time the zero-field, finite temperature linear response conductance, as well as giving closed form expressions describing the zero-temperature, nonequilibrium conductance in an applied Zeeman field.

SELECTION OF CITATIONS
SEARCH DETAIL
...