Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Med (Lond) ; 2(1): 162, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543940

ABSTRACT

BACKGROUND: Despite apparent promise and the availability of numerous examples in the literature, machine learning models are rarely used in practice in ICU units. This mismatch suggests that there are poorly understood barriers preventing uptake, which we aim to identify. METHODS: We begin with a qualitative study with 29 interviews of 40 Intensive Care Unit-, hospital- and MedTech company staff members. As a follow-up to the study, we attempt to quantify some of the technical issues raised. To perform experiments we selected two models based on criteria such as medical relevance. Using these models we measure the loss of performance in predictive models due to drift over time, change of available patient features, scarceness of data, and deploying a model in a different context to the one it was built in. RESULTS: The qualitative study confirms our assumptions on the potential of AI-driven analytics for patient care, as well as showing the prevalence and type of technical blocking factors that are responsible for its slow uptake. The experiments confirm that each of these issues can cause important loss of predictive model performance, depending on the model and the issue. CONCLUSIONS: Based on the qualitative study and quantitative experiments we conclude that more research on practical solutions to enable AI-driven innovation in Intensive Care Units is needed. Furthermore, the general poor situation with respect to public, usable implementations of predictive models would appear to limit the possibilities for both the scientific repeatability of the underlying research and the transfer of this research into practice.


It is helpful for clinicians to be able to predict what will happen to a patient in an Intensive Care Unit (ICU); accurate computer-based predictive systems could help to avoid serious illness. However, most ICUs currently make little or no use of them. Here, we try to understand why, so that barriers to their introduction can be overcome. We interview medical experts, who agree that prediction systems should be feasible. They also identify practical technical problems with using them. We investigate these issues by running experiments on example predictive systems where we change what data is used to train the system and what data it is asked to make predictions on. The experiments show that the identified issues cause problems and are worthy of further attention. This work should help to enable the use of computer-based predictive systems in ICUs.

2.
IEEE Trans Pattern Anal Mach Intell ; 28(3): 432-45, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16526428

ABSTRACT

The goal of this paper is to provide a "self-adaptive" system for real-time range acquisition. Reconstructions are based on a single frame structured light illumination. Instead of using generic, static coding that is supposed to work under all circumstances, system adaptation is proposed. This occurs on-the-fly and renders the system more robust against instant scene variability and creates suitable patterns at startup. A continuous trade-off between speed and quality is made. A weighted combination of different coding cues--based upon pattern color, geometry, and tracking--yields a robust way to solve the correspondence problem. The individual coding cues are automatically adapted within a considered family of patterns. The weights to combine them are based on the average consistency with the result within a small time-window. The integration itself is done by reformulating the problem as a graph cut. Also, the camera-projector configuration is taken into account for generating the projection patterns. The correctness of the range maps is not guaranteed, but an estimation of the uncertainty is provided for each part of the reconstruction. Our prototype is implemented using unmodified consumer hardware only and, therefore, is cheap. Frame rates vary between 10 and 25 fps, dependent on scene complexity.


Subject(s)
Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Photogrammetry/methods , Photometry/methods , Algorithms , Cluster Analysis , Computer Systems , Image Enhancement/methods , Light , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...