Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 23(18): 11091-11103, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33949518

ABSTRACT

The short-range structures of LiF-ThF4, NaF-AnF4, KF-AnF4, and Cs-AnF4 (An = Th, U), were probed using in situ high temperature Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Signally, the EXAFS spectra of pure molten ThF4 and UF4 were measured for the first time. The data were interpreted with the aid of Molecular Dynamics (MD) and standard fitting of the EXAFS equation. As in related studies, a speciation distribution dominated by [AnFx]4-x (x = 7, 8, 9) coordination complexes was observed. The average coordination number was found to decrease with the increasing size of the alkali cation, and increase with AnF4 content. An average coordination number close to 6, which had not been detected before in melts of alkali actinide fluorides, was seen when CsF was used as solvent.

2.
Phys Chem Chem Phys ; 23(15): 9512-9523, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885062

ABSTRACT

Cesium and iodine, which are formed during a fission process in a nuclear reactor, are considered as major fission products responsible for the environmental burden in case of a nuclear accident. From the safety point of view, it is thus important to understand their release mechanism when overheating of the reactor core occurs. This work presents an experimental investigation of the behaviour of caesium iodide and caesium fluoride in fluoride based molten salt reactor fuel during high temperature events. It has been demonstrated that CsF will be retained in the fuel salt and thus its volatility will be significantly reduced, while CsI will not dissolve in the fluoride-based fuel matrix and will thus remain more volatile. The influence of the presence of CsI and CsF on the melting behaviour of the fuel has been investigated using calorimetry, revealing their negligible effects.

3.
Sci Rep ; 8(1): 5038, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29567942

ABSTRACT

Values are presented for thermal conductivity, specific heat, spectral and total hemispherical emissivity of ThO2 (a potential nuclear fuel material) in a temperature range representative of a nuclear accident - 2000 K to 3050 K. For the first time direct measurements of thermal conductivity have been carried out on ThO2 at such high temperatures, clearly showing the property does not decrease above 2000 K. This could be understood in terms of an electronic contribution (arising from defect induced donor/acceptor states) compensating the degradation of lattice thermal conductivity. The increase in total hemispherical emissivity and visible/near-infrared spectral emissivity is consistent with the formation of donor/acceptor states in the band gap of ThO2. The electronic population of these defect states increases with temperature and hence more incoming photons (in the visible and near-infrared wavelength range) can be absorbed. A solid state physics model is used to interpret the experimental results. Specific heat and thermal expansion coefficient increase at high temperatures due to the formation of defects, in particular oxygen Frenkel pairs. Prior to melting a gradual increase to a maximum value is predicted in both properties. These maxima mark the onset of saturation of oxygen interstitial sites.

4.
Dalton Trans ; 46(35): 11626-11635, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28832053

ABSTRACT

A new double neptunium zirconium phosphate of the type MxZr2(PO4)3 (M = Np), crystallizing in the structure type NaZr2(PO4)3 (NZP, NASICON), was synthesized by solid state reactions at high temperatures and characterized by X-ray diffraction, infrared spectroscopy and Mössbauer spectroscopy. The Rietveld refinement of the XRD pattern together with the analysis of the IR spectra of the sample confirmed the space group P3[combining macron]c, the same as that for the lanthanide analogues Ln0.33Zr2(PO4)3. However, Mössbauer studies revealed the presence of neptunium in the two oxidation states +3 and +4, indicating a two-phase NZP system with different crystallographic environments of the neptunium atoms. The thermal behaviour of the sample was followed up to 1400 °C by thermogravimetric analysis.

5.
J Raman Spectrosc ; 46(7): 661-668, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26494941

ABSTRACT

The Raman spectroscopic characterization of the orthorhombic phase of Cs2RuO4 was carried out by means of group theory and quantum chemical analysis. Multiple models based on ruthenate (VI+) tetrahedra were tested, and characterization of all the active Raman modes was achieved. A comparison of Raman spectra of Cs2RuO4, Cs2MoO4, and Cs2WO4 was also performed. Raman laser heating induced a phase transition from an ordered to a disordered structure. The temperature-phase transition was calculated from the anti-Stokes/Stokes ratio and compared with the ones measured at macroscopic scale. The phase transition is connected with tilting and/or rotations of RuO4 tetrahedra, which lead to a disorder at the RuO4 sites. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.

6.
Dalton Trans ; 44(42): 18370-7, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26369476

ABSTRACT

α-Na3NpO4 and α-Na3PuO4 exhibit an orthorhombic structure (Z = 8), in space group Fmmm, with lattice parameters a = 13.352(2) Å, b = 9.629(2) Å, and c = 6.673(2) Å for the neptunium compound, and a = 13.302(2) Å, b = 9.634(2) Å, and c = 6.651(2) Å for the plutonium analogue. The corresponding structure has been solved ab initio as no structural analogue could be found in the literature. The pentavalent state of neptunium has moreover been confirmed by (237)Np Mössbauer spectroscopy, and the local structural properties inferred from the X-ray Rietveld refinement have been related to the fitted quadrupole coupling constant and asymmetry parameters. The existence of a low temperature metastable m phase of Na3NpO4 and Na3PuO4, of the NaCl type, has also been suggested.

7.
Inorg Chem ; 53(1): 375-82, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24350659

ABSTRACT

The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αß = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to ß phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry.

8.
Inorg Chem ; 52(5): 2404-11, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23421448

ABSTRACT

Using drop calorimetry, we measured enthalpy increments of the LiF-KF, LiF-RbF, and LiF-CsF binary systems at temperatures above the melting point. Ten samples with different compositions (four compositions for LiF-KF, one composition for LiF-RbF, and five compositions for LiF-CsF) were prepared and measured between 884 K and 1382 K. To protect the calorimeter from corrosive fluoride vapor at high temperature, an encapsulating technique developed for this purpose was used. The samples were filled in nickel containers that were sealed by laser welding and afterward used for the measurements. From the obtained results, we derived the molar heat capacity functions of the respective samples. The heat capacities of the samples, having different compositions of the same binary system, were compared with the values for ideal behavior and the excess heat capacity function was determined for the entire composition range of the liquid solution. It was found that the excess heat capacities clearly depend on the cation radius and increase in the following order: LiF-NaF < LiF-KF < LiF-RbF < LiF-CsF.

9.
Inorg Chem ; 50(20): 10102-6, 2011 Oct 17.
Article in English | MEDLINE | ID: mdl-21913692

ABSTRACT

The low temperature heat capacity of UF(3) has been measured using an adiabatic low temperature calorimeter in the temperature range from 10 to 350 K. These data are complemented at the lowest temperature region with data obtained with a Quantum Design PPMS-14 device in the temperature range from 0.5 to 20 K. Good agreement between both techniques has been found, and from these experimental results the absolute entropy of UF(3) at 298.15 K has been determined as 126.8 ± 2.5 J K(-1) mol(-1). On the basis of the specific heat data and the magnetization measurements performed on a SQUID device, a transition at 1.59 K attributed to Curie temperature of a ferromagnetic transition has been found in this study. This observation makes UF(3) a unique compound with an unusually low ferromagnetic ordering temperature.

10.
J Chem Phys ; 130(13): 134716, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19355773

ABSTRACT

A multiscale modeling approach is developed to compute the phase diagram of the RbF-CsF binary system. The mixing enthalpies of the (Rb,Cs)F solid and liquid solutions are evaluated using density functional theory and classical molecular dynamics calculations, respectively. For the solid solution, 18 different configurations are studied with density functional theory and the surrounded atom model is applied in order to compute the configurational partition function. We also measure the solidus and liquidus equilibria using differential scanning calorimetry. Finally the RbF-CsF phase diagram is constructed using the calculated excess free enthalpies of the solid and liquid solutions and a very good agreement with our experimental data is found.

SELECTION OF CITATIONS
SEARCH DETAIL
...