Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026714

ABSTRACT

Tagmentation combines DNA fragmentation and sequencing adapter addition by leveraging the transposition activity of the bacterial cut-and-paste Tn5 transposase, to enable efficient sequencing library preparation. Here we present an open-source protocol for the generation of multi-purpose hyperactive Tn5 transposase, including its benchmarking in CUT&Tag, bulk and single-cell ATAC-seq. The OpenTn5 protocol yields multi-milligram quantities of pG-Tn5 E54K, L372P protein per liter of E. coli culture, sufficient for thousands of tagmentation reactions and the enzyme retains activity in storage for more than a year.

2.
bioRxiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38328033

ABSTRACT

Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that removes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of H1.8-bound nucleoplasmin NPM2 isolated from interphase chromosomes and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.

3.
Cell Rep ; 33(11): 108484, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326779

ABSTRACT

The nuclear pore complex forms a highly crowded selective barrier with intrinsically disordered regions at the nuclear membrane to coordinate nucleocytoplasmic molecular communications. Although oxidative stress is known to alter the barrier function, the molecular mechanism underlying this adaptive control of the nuclear pore complex remains unknown. Here we uncover a systematic control of the crowding barrier within the nuclear pore in response to various redox environments. Direct measurements of the crowding states using a crowding-sensitive FRET (Förster resonance energy transfer) probe reveal specific roles of the nuclear pore subunits that adjust the degree of crowding in response to different redox conditions, by adaptively forming or disrupting redox-sensitive disulfide bonds. Relationships between crowding control and the barrier function of the nuclear pore are investigated by single-molecular fluorescence measurements of nuclear transport. Based on these findings, we propose a proximal control model of molecular crowding in vivo that is dynamically regulated at the molecular level.


Subject(s)
Cysteine/metabolism , Nuclear Pore/metabolism , Humans , Oxidation-Reduction
4.
FASEB J ; 34(1): 1532-1545, 2020 01.
Article in English | MEDLINE | ID: mdl-31914646

ABSTRACT

In this study, we examined how channel-forming subunits of the nuclear pore complex (NPC) are assembled into a selective channel within a highly structured scaffold ring during postmitotic assembly. We focused on non-structured domains of the scaffold Nups and performed in vitro self-assembled particle assays with those derived from channel-forming FG-Nups. We found that non-structured domains of ELYS and Nup35N interacted with channel-forming FG-Nups to form a self-assembled particle. Sequential addition of FG-Nups into the scaffold particle revealed that ELYS, which initiates postmitotic NPC reassembly, interacts with early assembling FG-Nups (Nups98 and 153) but not middle stage-assembling FG-Nups (Nups58 and 62). Nup35, which assembles between the early and middle stages, facilitated the assembly of Nup62 into the early assembling Nups both in vitro and in vivo. These results demonstrate that ELYS and Nup35 have a role of facilitator in the ordered assembly of channel-forming FG-Nups during mitosis.


Subject(s)
Mitosis/physiology , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Protein Domains/physiology , Animals , Humans , Rats
5.
J Cell Sci ; 131(1)2018 01 04.
Article in English | MEDLINE | ID: mdl-29142102

ABSTRACT

The karyopherin family of nuclear transport receptors is composed of a long array of amphiphilic α-helices and undergoes flexible conformational changes to pass through the hydrophobic crowding barrier of the nuclear pore. Here, we focused on the characteristic enrichment of prolines in the middle of the outer α-helices of importin-ß. When these prolines were substituted with alanine, nuclear transport activity was reduced drastically in vivo and in vitro, and caused a severe defect in mitotic progression. These mutations did not alter the overall folding of the helical repeat or affect its interaction with cargo or the regulatory factor Ran. However, in vitro and in silico analyses revealed that the mutant lost structural flexibility and could not undergo rapid conformational changes when transferring from a hydrophilic to hydrophobic environment or vice versa. These findings reveal the essential roles of prolines in ensuring the structural flexibility and functional integrity of karyopherins.


Subject(s)
Nuclear Pore/genetics , Proline/chemistry , Protein Conformation, alpha-Helical , beta Karyopherins/genetics , Active Transport, Cell Nucleus/genetics , Humans , Models, Molecular , Nuclear Pore/metabolism , beta Karyopherins/chemistry , ran GTP-Binding Protein/metabolism
6.
Sci Rep ; 7(1): 5709, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720791

ABSTRACT

The central channel of the nuclear pore complex (NPC) is occupied by non-structured polypeptides with a high content of Phe-Gly (FG) motifs. This protein-rich environment functions as an entropic barrier that prevents the passage of molecules, as well as the binding sites for karyopherins, to regulate macromolecular traffic between the nucleoplasm and the cytoplasm. In this study, we expressed individual Nups fused with a crowding-sensitive probe (GimRET) to determine the spatial distribution of protein-rich domains within the central channel in vivo, and characterize the properties of the entropic barrier. Analyses of the probe signal revealed that the central channel contains two protein-rich domains at both the nucleoplasmic and cytoplasmic peripheries, and a less-crowded central cavity. Karyopherins and other soluble proteins are not the constituents of the protein-rich domains. The time-lapse observation of the post-mitotic reassembly process also revealed how individual protein-rich domains are constructed by a sequential assembly of nucleoporins.


Subject(s)
Active Transport, Cell Nucleus/physiology , Cell Nucleus/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/physiology , Binding Sites , Cytoplasm/metabolism , Escherichia coli/metabolism , HeLa Cells , Humans , Karyopherins/metabolism , Macromolecular Substances
SELECTION OF CITATIONS
SEARCH DETAIL
...