Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 18(12): 12153-60, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20588338

ABSTRACT

We have systematically investigated random lasing properties in weakly scattering systems composed of a macroporous silica disk immersed in a dye solution where the solvent is a mixture of two alcohols. Controlling the refractive index of the mixed solvent allows us to vary the scattering strength over a wide range. We have found two different scattering regimes where sharp spectral spikes with linewidth less than 1.0 nm, i.e., random laser with coherent feedback, appear in emission spectra. When the refractive index contrast between the solvent and the silica is very small, random lasing with coherent feedback is observed although the system appears nearly transparent. The coherent feedback vanishes when the refractive index contrast is increased up to a critical value, while further increase in the refractive index contrast results in the revival of the coherent feedback. We suggest that the existence of underlying microcavities plays an important role in the very weakly scattering regime (ballistic) while other mechanisms such as amplified extended modes may lead to the coherent feedback in lasing oscillation when the scattering strength increases.

2.
J Chromatogr A ; 1216(44): 7375-83, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19580973

ABSTRACT

We have developed a method of independently tailoring the macro- and mesoporous structures in titania (TiO2) monoliths in order to achieve liquid chromatographic separations of phosphorous-containing compounds. Anatase TiO2 monolithic gels with well-defined bicontinuous macropores and microstructured skeletons are obtained via the sol-gel process in strongly acidic conditions using poly(ethylene oxide) as a phase separator and N-methylformamide as a proton scavenger. Aging treatment of the wet gels in the mother liquor at temperatures of 100-200 degrees C and subsequent heat treatment at 400 degrees C allow the formation and control of mesoporous structures with uniform pore size distributions in the gel skeletons, without disturbing the preformed macroporous morphology. The monolithic TiO2 rod columns with bimodal macro-mesoporous structures possess the phospho-sensitivity and exhibit excellent chromatographic separations of phosphorus-containing compounds.


Subject(s)
Chromatography, High Pressure Liquid/methods , Titanium/chemistry , Microscopy, Electron, Scanning , Organophosphorus Compounds/chemistry , Porosity , Temperature
3.
J Biomed Mater Res B Appl Biomater ; 66(2): 553-8, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12861607

ABSTRACT

The effect of the sphered particles on the contraction ratio of porcelain inlay processed by the cold isostatic pressure (CIP) method was investigated. The conventional lathe-cut porcelain powder was crushed to finer particles and the secondary particles with spherical shape by adding binders of acrylic resin, wax, and polyvinyl alcohol, respectively. Porcelain powder was molded as a disc-shaped green body in a refractory model and compressed at 200 MPa by CIP. From this green compact, the sintered porcelain was obtained by only one step of firing. The porcelain discs were then used for the measurements of contraction ratio, scanning microscopic observation, biaxial flexure strength, Vickers hardness, and density. Firing contraction was decreased to about 1% in the sphered particle groups, compared with 7% of the lathe-cut porcelain powder. Although biaxial flexure strength was about 85 MPa, which is lower than the 120 MPa of the control group, and the density was significantly decreased by about 10% from the 2.4 g/cm3 of the control substance, Vickers hardness, which ranged from 531 to 537, showed no significant differences among all of the groups. The CIP method could save labor in the process of making porcelain inlays, and sphered powders could contribute significantly to a decrease in the contraction ratio in the sintering process.


Subject(s)
Cold Temperature , Dental Porcelain/chemistry , Inlays , Biocompatible Materials/chemistry , Dental Materials/chemistry , Humans , Materials Testing , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...