Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Environ ; 38(1)2023.
Article in English | MEDLINE | ID: mdl-36754424

ABSTRACT

The cholesterol-lowering and immunomodulatory effects and probiotic properties of 25 lactic acid bacteria (LAB) isolated from fermented fish (pla-paeng-daeng) in Thailand were examined in the present study. Based on their phenotypic and genetic characteristics, LAB were identified as Lactiplantibacillus pentosus (Group I, 6 isolates), Lactiplantibacillus argentoratensis (Group II, 1 isolate), Limosilactobacillus fermentum (Group III, 2 isolates), Companilactobacillus pabuli (Group IV, 4 isolates), Companilactobacillus farciminis (Group V, 5 isolates), Companilactobacillus futsaii (Group VI, 6 isolates), and Enterococcus lactis (Group VII, 1 isolate). Lactiplantibacillus pentosus PD3-1 and PD9-2 and Enterococcus lactis PD3-2 exhibited bile salt hydrolase (BSH) activities. The percentage of cholesterol assimilated by all isolates ranged between 21.40 and 54.07%. Bile salt hydrolase-producing isolates tolerated acidic and bile conditions and possessed adhesion properties. They also exerted immunomodulatory effects that affected the production of interleukin-12 (IL-12), interferon-γ (IFN-γ), human ß-defensin-2 (hBD-2), and nitric oxide (NO). These isolates meet standard probiotic requirements and exert beneficial effects.


Subject(s)
Fermented Foods , Lactobacillales , Probiotics , Animals , Humans , Cholesterol , Enterococcus/genetics , Lactobacillales/genetics , Thailand , Fermented Foods/microbiology
2.
Probiotics Antimicrob Proteins ; 15(5): 1206-1220, 2023 10.
Article in English | MEDLINE | ID: mdl-35987935

ABSTRACT

Lactiplantibacillus sp. LM14-2, isolated from Thai-fermented mussel (Hoi-dong), showed attractive probiotic properties. This strain was identified as Lactiplantibacillus plantarum based on its phenotypic, chemotaxonomic, and genetic characteristics including whole-genome sequencing (WGS). The draft genome sequence was analyzed and annotated for the molecular mechanisms involved in the safety assessment, the adaptation and adhesion of L. plantarum LM14-2 to the gastrointestinal tract (GIT), and the beneficial genes involved in bacteria-host interactions. The L. plantarum LM14-2 exhibited bile salt hydrolase (BSH) activity, assimilated cholesterol at 86.07 ± 5.03%, stimulated the secretion of interleukin-12, interferon-gamma, and human beta defensin-2, and induced nitric oxide production. In addition, L. plantarum LM14-2 showed excellent gastrointestinal tolerance and adhesion ability to Caco-2 cells. Furthermore, the in silico analysis showed that L. plantarum LM14-2 was a non-human pathogen and did not contain antibiotic resistance genes or plasmids. L. plantarum LM14-2 also contained potential genes associated with various probiotic characteristics and health-promoting effects. Consequently, this study suggested that L. plantarum LM14-2 could be considered safe, with potential probiotic properties and health-promoting impacts, which could facilitate its probiotic application.


Subject(s)
Lactobacillus plantarum , Probiotics , Humans , Lactobacillus plantarum/genetics , Caco-2 Cells , Plasmids , Immunomodulation , Cholesterol
3.
Heliyon ; 8(12): e12272, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590538

ABSTRACT

Forty-eight lactic acid bacteria (LAB) isolated from fermented mussels in Thailand were evaluated for their probiotic properties, bile salt hydrolase (BSH), cholesterol assimilation and immunomodulatory effects. They were identified as Companilactobacillus formosensis (Group I, 10 isolates), Lentilactobacillus buchneri (Group II, 8 isolates), Lactiplantibacillus plantarum subsp. plantarum (Group III, 16 isolates), Lacticaseibacillus rhamnosus (Group IV, 1 isolate), Pediococcus pentosaceus (Group V, 5 isolates) and P. acidilactici (Group V, 1 isolate), Enterococcus thailandicus (Group VI, 2 isolates), En. hirae (Group VII, 1 isolate), En. durans (Group VI, 1 isolate), Lactococcus lactis subsp. lactis (Group VII, 1 isolate), Lc. lactis subsp. hordinae (Group VII, 1 isolate), and Leuconostoc lactis (Group VIII, 1 isolate), based on their phenotypic and genetic characteristics. Seven isolates, L. plantarum subsp. plantarum LM6-1, LM6-2, LM7-2-2B, LM12-1, LM14-1, LM15-1P and LM15-2 expressed bile salt hydrolase activity. All isolates assimilated cholesterol ranging from 20.73 to 79.40%. BSH-producing isolates were tolerant to acidic and bile conditions and showed the adhesion ability to Caco-2 cells. The BSH-producing and selected isolates showed the immunomodulatory effects to stimulate interleukin-12 (IL-12), interferon-gamma (IFN-γ), human beta defensin-2 (hBD-2) and nitric oxide (NO) production at various levels. Therefore, these results indicated that the isolates meet the standard probiotic criteria and beneficial effects.

4.
J Food Biochem ; 45(11): e13958, 2021 11.
Article in English | MEDLINE | ID: mdl-34611901

ABSTRACT

It is known that lactic acid bacteria induce the IL-12. The IL-12 activates NK cells and promotes the production of IFN-γ. The IFN-γ activates macrophages resulting in enhanced phagocytosis and bactericidal activity. We have been investigating fermented foods that activate the immune function. In this study, we investigated the IL-12 inducibility of fermented foods using the specific antibody. Fermented soybean foods such as Tempeh and Natto are attracting attention in terms of nutrition, functionality, and food problems. In this study, Tempeh induced 1,080 µg/ml of IL-12, and IFN-γ associated with the induction of IL-12 was also induced at 682 µg/ml. This was more than twice the induced intensity of PBS. On the contrary, Natto hardly induced IL-12 and IFN-γ. Tempeh also accelerated phagocytosis of the macrophage THP-1 cells. In this study, it was found that the fermented soybean-derived food, Tempeh, has a function of activating the immune function. This is the first report that Tempeh activates innate immunity. PRACTICAL APPLICATIONS: Tempeh, a fermented soybean food induced the IL-12 and IFN-γ production and the increase of macrophage phagocytosis in this study suggested a new function to enhance immunity. Tempeh is also expected to be effective in preventing lifestyle diseases. Fermented soybean products of Tempeh was considered to be a very useful health food for the problems of modern society such as maintaining health by eating, improving immunity, and ingesting vegetable protein due to diversifying food.


Subject(s)
Fermented Foods , Soy Foods , Fermentation , Interleukin-12 , Macrophages , Phagocytosis
5.
Water Res ; 41(8): 1653-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17353025

ABSTRACT

Cyanobacterial growth in semi-closed water areas such as reservoirs brings about a coagulation inhibition in a drinking water treatment system, but the inhibitory substances and mechanisms involved have yet to be elucidated. In this study, proteins having a high affinity with polyaluminum chloride (PACl) were isolated from organic substances produced by Microcystis aeruginosa with the affinity chromatography technique. Both extracellular organic matter (EOM) and cellular organic matter (COM) disturbed the flocculation of suspended kaolin with PACl, but it was likely that nonproteinous substances in EOM cause the reduction of coagulation effciency. In contrast, proteins in COM were obtained as possible inhibitory substances for the coagulation with PACl. These proteins could consume PACl in the coagulation process due to the formation of chelate complexes between these inhibitory proteins and the coagulant. The consumption of PACl by cyanobacterial proteins could be one of the important causes of the increase in coagulant demand.


Subject(s)
Aluminum Hydroxide/chemistry , Bacterial Proteins/chemistry , Microcystis , Flocculation , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...