Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 12(1): 31-47, 2018 01.
Article in English | MEDLINE | ID: mdl-28885627

ABSTRACT

Recent single-gene-based surveys of deep continental aquifers demonstrated the widespread occurrence of archaea related to Candidatus Methanoperedens nitroreducens (ANME-2d) known to mediate anaerobic oxidation of methane (AOM). However, it is unclear whether ANME-2d mediates AOM in the deep continental biosphere. In this study, we found the dominance of ANME-2d in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock. A near-complete genome of one representative species of the ANME-2d obtained from the underground borehole has most of functional genes required for AOM and assimilatory sulfate reduction. The genome of the subsurface ANME-2d is different from those of other members of ANME-2d by lacking functional genes encoding nitrate and nitrite reductases and multiheme cytochromes. In addition, the subsurface ANME-2d genome contains a membrane-bound NiFe hydrogenase gene putatively involved in respiratory H2 oxidation, which is different from those of other methanotrophic archaea. Short-term incubation of microbial cells collected from the granitic groundwater with 13C-labeled methane also demonstrates that AOM is linked to microbial sulfate reduction. Given the prominence of granitic continental crust and sulfate and methane in terrestrial subsurface fluids, we conclude that AOM may be widespread in the deep continental biosphere.


Subject(s)
Groundwater/microbiology , Methane/metabolism , Methanosarcinales/genetics , Methanosarcinales/metabolism , Silicon Dioxide/analysis , Anaerobiosis , Environment , Genomics , Groundwater/chemistry , Methanosarcinales/classification , Methanosarcinales/isolation & purification , Nitrates/metabolism , Oxidation-Reduction , Phylogeny , Silicon Dioxide/metabolism , Sulfates/metabolism
2.
Appl Environ Microbiol ; 82(15): 4492-504, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27208107

ABSTRACT

UNLABELLED: Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE: Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation.


Subject(s)
Ammonium Compounds/metabolism , Archaea/metabolism , Hot Springs/microbiology , Rivers/microbiology , Denitrification , Nitrification , Nitrites/metabolism , Nitrogen Isotopes/metabolism , Oxidation-Reduction , Oxygen Isotopes/metabolism , Rivers/chemistry
3.
Environ Microbiol Rep ; 8(2): 285-94, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26743638

ABSTRACT

Deep granitic aquifer is one of the largest, but least understood, microbial habitats. To avoid contamination from the surface biosphere, underground drilling was conducted for 300 m deep granitic rocks at the Mizunami underground research laboratory (URL), Japan. Slightly alkaline groundwater was characterized by low concentrations of dissolved organic matter and sulfate and the presence of > 100 nM H2 . The initial biomass was the highest (∼10(5) cells ml(-1) ) with the dominance of Hydrogenophaga spp., whereas the phylum Nitrospirae became predominant after 3 years with decreasing biomass (∼10(4) cells ml(-1) ). One week incubation of groundwater microbes after 3 years with (13) C-labelled bicarbonate and 1% H2 and subsequent single-cell imaging with nanometer-scale secondary ion mass spectrometry demonstrated that microbial cells were metabolically active. Pyrosequencing of microbial communities in groundwater retrieved at 3-4 years after drilling at the Mizunami URL and at 14 and 25 years after the drilling at the Grimsel Test Site, Switzerland, revealed the occurrence of common Nitrospirae lineages at the geographically distinct sites. As the close relatives of the Nitrospirae lineages were exclusively detected from deep groundwaters and terrestrial hot springs, it suggests that these bacteria are indigenous and potentially adapted to the deep terrestrial subsurface.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Groundwater/microbiology , Bacteria/metabolism , Groundwater/chemistry , Hydrogen/analysis , Hydrogen-Ion Concentration , Japan , Organic Chemicals/analysis , Sulfates/analysis , Switzerland
4.
PLoS One ; 9(12): e113063, 2014.
Article in English | MEDLINE | ID: mdl-25517230

ABSTRACT

In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.


Subject(s)
Ecosystem , Microbiology , Oceans and Seas , Energy Metabolism , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Groundwater/chemistry , Groundwater/microbiology , Hydrogen-Ion Concentration , Japan , Methane/chemistry , Methane/metabolism , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Sulfates/chemistry , Sulfates/metabolism , Temperature
5.
Microb Ecol ; 65(3): 626-37, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23340500

ABSTRACT

Freshwater aquifers in granitic rocks are widespread microbial habitats in the terrestrial subsurface. Microbial populations in deep granitic groundwater from two recently drilled (1 and 2 years) and two old boreholes (14 and 25 years) were compared. The 16S rRNA gene sequences related to "Candidatus Magnetobacterium bavaricum", Thermodesulfovibrio spp. of Nitrospirae (90.5-93.1 % similarity) and a novel candidate division with <90 % similarity to known cultivated species were dominant in all boreholes. Most of the environmental clones closely related to the novel lineages in Nitrospirae, which have been detected exclusively in deep groundwater samples. In contrast, betaproteobacterial sequences related to the family Rhodocyclaceae were obtained only from the recently drilled boreholes, which had higher total cell numbers. Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis supported the result from clone library analysis; betaproteobacterial cells were dominantly detected in recently drilled boreholes. These results suggest that while indigenous microbial populations represented by the novel phylotypes persisted in the boreholes for 25 years, betaproteobacterial species disappeared after 2 years owing to the change of substrate availability.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Groundwater/microbiology , Bacteria/genetics , Biodiversity , DNA, Bacterial/genetics , Ecosystem , Groundwater/analysis , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Switzerland
6.
Rapid Commun Mass Spectrom ; 25(21): 3351-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22006399

ABSTRACT

We have developed a new automated analytical system that employs a continuous flow isotope ratio mass spectrometer to determine the stable hydrogen isotopic composition (δD) of nanomolar quantities of molecular hydrogen (H(2)) in an air sample. This method improves previous methods to attain simpler and lower-cost analyses, especially by avoiding the use of expensive or special devices, such as a Toepler pump, a cryogenic refrigerator, and a special evacuation system to keep the temperature of a coolant under reduced pressure. Instead, the system allows H(2) purification from the air matrix via automatic multi-step gas chromatographic separation using the coolants of both liquid nitrogen (77 K) and liquid nitrogen + ethanol (158 K) under 1 atm pressure. The analytical precision of the δD determination using the developed method was better than 4‰ for >5 nmol injections (250 mL STP for 500 ppbv air sample) and better than 15‰ for 1 nmol injections, regardless of the δD value, within 1 h for one sample analysis. Using the developed system, the δD values of H(2) can be quantified for atmospheric samples as well as samples of representative sources and sinks including those containing small quantities of H(2) , such as H(2) in soil pores or aqueous environments, for which there is currently little δD data available. As an example of such trace H(2) analyses, we report here the isotope fractionations during H(2) uptake by soils in a static chamber. The δD values of H(2) in these H(2)-depleted environments can be useful in constraining the budgets of atmospheric H(2) by applying an isotope mass balance model.

7.
Environ Microbiol ; 8(1): 37-49, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16343320

ABSTRACT

Novel hydrothermal activities accompanying effluent white smokers and elemental sulfur chimney structures at the north-east lava dome of the TOTO caldera depression in the Mariana Volcanic Arc have been explored and characterized by geochemical and microbiological surveys. White smoker hydrothermal fluids were observed in the potential hydrothermal activity centre of the field and represented the maximal temperature of 170 degrees C and the lowest pH of 1.6. The chimney structures, all consisting of elemental sulfur (sulfur chimney), were also unique to the TOTO caldera hydrothermal field. Microbial community structures in a sulfur chimney and its formation hydrothermal fluid with a high concentration of hydrogen sulfide (15 mM) have been investigated by culture-dependent and -independent analyses. 16S rRNA gene clone analysis and fluorescence in situ hybridization (FISH) analysis revealed that epsilon-Proteobacteria dominated the microbial communities in the sulfur chimney structure and formed a dense microbial mat covering the sulfur chimney surface. Archaeal phylotypes were consistently minor components in the communities and related to the genera Thermococcus, Pyrodictium, Aeropyrum, and the uncultivated archaeal group of 'deep-sea hydrothermal vent euryarchaeotal group'. Cultivation analysis suggested that the chemolithoautotrophs might play a significant ecological role as primary producers utilizing gas and sulfur compounds provided from hydrothermal fluids.


Subject(s)
Archaea/genetics , Epsilonproteobacteria/genetics , Phylogeny , Volcanic Eruptions , Water Microbiology , Base Sequence , Cloning, Molecular , Cluster Analysis , Epsilonproteobacteria/growth & development , Geography , Hydrogen Sulfide/analysis , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Pacific Ocean , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...