Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Methods Mol Biol ; 2758: 389-399, 2024.
Article in English | MEDLINE | ID: mdl-38549026

ABSTRACT

The study of urinary peptidome is an important area of research, which concerns the characterization of endogenous peptides, as well as the identification of biomarkers for a wide range of socially significant diseases. First of all, this relates to renal and genitourinary pathologies and/or pathologies associated with proteinuria, such as kidney diseases, bladder, prostate and ovarian cancers, diabetic nephropathy, and pre-eclampsia. Unlike proteins, peptides do not require proteolytic hydrolysis, can be analyzed in their native form and can provide certain information about occurring (patho)physiological processes. Mass spectrometry (MS)-based approaches are the most unbiased and sensitive instruments with high multiplexing capacity and provided most of the current information about endogenous urine peptides. However, despite the large number of urine peptidomic studies, there are certain issues related to the insufficient comparability of their results due to the lack of consistent approaches to their interpretation. Also the development of a custom project-specific protein library for endogenous peptides search and identification is another important point that should be noted in the context of high-throughput peptidomic analysis. Here we propose the custom-specific urinary protein database and the grouping of endogenous urinary peptides with overlapping sequences as useful tools, which can facilitate the acquisition and analysis of LC-MS peptidomic data, as well as the comparison of results of different studies, which should facilitate their more efficient further application.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Humans , Male , Female , Pregnancy , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Proteins , Peptides/metabolism , Proteomics/methods
2.
Nephrology (Carlton) ; 29(2): 86-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864506

ABSTRACT

AIM: Minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are podocytopathies characterized by damage to the glomerular filtration barrier, leading to proteinuria and nephrotic syndrome. The production of anti-podocyte antibodies has been proposed as potential circulating factors contributing to the development of these conditions. The aim of the study is to evaluate the levels of anti-nephrin antibodies in patients with podocytopathies and healthy subjects. METHODS: In this study, a total of 77 patients with active glomerulopathy and 11 healthy subjects were included. Forty one patients were diagnosed with FSGS, 11 with MCD, and 25 with MN. To measure the levels of anti-nephrin antibodies, enzyme-linked immunosorbent assay was used. RESULTS: The levels of antibodies to nephrin were significantly higher in patients with MCD 61.2 [28.9-66.3] ng/mL and FSGS 32.5 [17.2-58.4] ng/mL compared to MN 20.3 [14.4-38.4] and healthy individuals 15.3 [12-18.9] ng/mL, p < .05. In patients with primary FSGS, the levels of antibodies to nephrin were significantly higher 45.2 [20-64.3] ng/mL compared to patients with secondary FSGS 26.7 [11.2-44.1] ng/mL, p < .05. There were no significant differences in the remission rate between the anti-nephrin antibodies positive and negative groups (log-rank test: p = .158). CONCLUSION: The level of anti-nephrin antibodies was found to be significantly higher in patients with MCD and pFSGS compared to those with sFSGS, MN, and healthy subjects. Anti-nephrin antibodies in MCD and primary FSGS may be associated with the severity of podocytopathies, however they did not have an impact on the response to therapy.


Subject(s)
Glomerulosclerosis, Focal Segmental , Membrane Proteins , Nephrosis, Lipoid , Nephrotic Syndrome , Adult , Humans , Glomerulosclerosis, Focal Segmental/diagnosis , Pilot Projects , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/drug therapy , Nephrosis, Lipoid/drug therapy , Nephrosis, Lipoid/diagnosis , Antibodies
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069155

ABSTRACT

Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.


Subject(s)
Fetal Growth Retardation , Proteomics , Pregnancy , Adult , Infant, Newborn , Female , Humans , Child , Fetal Growth Retardation/metabolism , Quality of Life , Fetus/metabolism , Placenta/metabolism
4.
Biomedicines ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37509426

ABSTRACT

Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.

5.
Front Med (Lausanne) ; 10: 1189017, 2023.
Article in English | MEDLINE | ID: mdl-37409273

ABSTRACT

Background: Minimal change disease and focal segmental glomerulosclerosis are primary podocytopathies that are clinically presented in adults presenting with severe nephrotic syndrome. The pathogenesis of these diseases is not clear and many questions remain to be answered. A new concept about the role of changes in the antigenic determinant of podocytes and the production of anti-podocyte antibodies that cause podocyte damage is being developed. The aim of the study is to evaluate the levels of anti-CD40 and anti-ubiquitin carboxyl-terminal hydrolase L1 (anti-UCH-L1) antibodies in patients with podocytopathies in comparison with other glomerulopathies. Methods: One hundred and six patients with glomerulopathy and 11 healthy subjects took part in the study. A histological study revealed primary FSGS in 35 patients (genetic cases of FSGS and secondary FSGS in the absence of NS were excluded), 15 had MCD, 21 - MN, 13 - MPGN, 22 patients - IgA nephropathy. The effect of steroid therapy was evaluated in patients with podocytopathies (FSGS and MCD). The serum levels of anti-UCH-L1 and anti-CD40 antibodies were measured by ELISA before steroid treatment. Results: The levels of anti-UCH-L1 antibodies were significantly higher in MCD patients and anti-CD40 antibodies were higher in MCD and FSGS than in the control group and other groups of glomerulopathies. In addition, the level of anti-UCH-L1 antibodies was higher in patients with steroid-sensitive FSGS and MCD, and anti-CD40 antibodies were lower than in patients with steroid-resistant FSGS. An increase in anti-UCH-L1 antibody levels above 6.44 ng/mL may be a prognostic factor of steroid-sensitivity. The ROC curve (AUC = 0.875 [95% CI 0.718-0.999]) for response to therapy showed a sensitivity of 75% and specificity of 87.5%. Conclusion: An increase in the level of anti-UCH-L1 antibodies is specific for steroid-sensitive FSGS and MCD, while an increase in anti-CD40 antibodies - for steroid-resistant FSGS, compared with other glomerulopathies. It suggests that these antibodies could be a potential factor for differential diagnosis and treatment prognosis.

6.
Molecules ; 28(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241899

ABSTRACT

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Subject(s)
Carcinoma , Lung Neoplasms , Animals , Mice , Bleomycin/toxicity , Respiratory Aerosols and Droplets , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Carcinoma/pathology
7.
Molecules ; 28(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37110557

ABSTRACT

Glomerulopathies with nephrotic syndrome that are resistant to therapy often progress to end-stage chronic kidney disease (CKD) and require timely and accurate diagnosis. Targeted quantitative urine proteome analysis by mass spectrometry (MS) with multiple-reaction monitoring (MRM) is a promising tool for early CKD diagnostics that could replace the invasive biopsy procedure. However, there are few studies regarding the development of highly multiplexed MRM assays for urine proteome analysis, and the two MRM assays for urine proteomics described so far demonstrate very low consistency. Thus, the further development of targeted urine proteome assays for CKD is actual task. Herein, a BAK270 MRM assay previously validated for blood plasma protein analysis was adapted for urine-targeted proteomics. Because proteinuria associated with renal impairment is usually associated with an increased diversity of plasma proteins being present in urine, the use of this panel was appropriate. Another advantage of the BAK270 MRM assay is that it includes 35 potential CKD markers described previously. Targeted LC-MRM MS analysis was performed for 69 urine samples from 46 CKD patients and 23 healthy controls, revealing 138 proteins that were found in ≥2/3 of the samples from at least one of the groups. The results obtained confirm 31 previously proposed CKD markers. Combination of MRM analysis with machine learning for data processing was performed. As a result, a highly accurate classifier was developed (AUC = 0.99) that enables distinguishing between mild and severe glomerulopathies based on the assessment of only three urine proteins (GPX3, PLMN, and A1AT or SHBG).


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Proteome , Mass Spectrometry/methods , Proteinuria/diagnosis , Blood Proteins , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/urine , Biomarkers
8.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047497

ABSTRACT

The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers. The groups were divided according to the anti-N IgG levels (AMI post-COVID (n = 44), AMI control (n = 22), control post-COVID (n = 31), and control (n = 27)). All participants underwent rotational thromboelastometry, thrombodynamics, impedance aggregometry, and blood plasma proteomics analysis. Both AMI groups of patients demonstrated higher values of clot growth rates, thrombus size and density, as well as the elevated levels of components of the complement system, proteins modifying the state of endothelium, acute-phase and procoagulant proteins. In comparison with AMI control, AMI post-COVID patients demonstrated decreased levels of proteins connected to inflammation and hemostasis (lipopolysaccharide-binding protein, C4b-binding protein alpha-chain, plasma protease C1 inhibitor, fibrinogen beta-chain, vitamin K-dependent protein S), and altered correlations between inflammation and fibrinolysis. A new finding is that AMI post-COVID patients opposite the AMI control group, are characterized by a less noticeable growth of acute-phase proteins and hemostatic markers that could be explained by prolonged immune system alteration after COVID-19.


Subject(s)
COVID-19 , Myocardial Infarction , Humans , Proteomics , COVID-19/complications , SARS-CoV-2 , Myocardial Infarction/metabolism , Hemostasis , Inflammation , Plasma/metabolism
9.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108355

ABSTRACT

It is suggested that activated CD44+ cells play a profibrogenic role in the pathogenesis of active glomerulopathies. Complement activation is also involved in renal fibrogenesis. The aim of the study was to evaluate the role of the activation of CD44+ cells in the kidney tissue and complement components' filtration to the urine as factors of renal tissue fibrosis in patients with glomerulopathies. In total, 60 patients with active glomerulopathies were included in our study: 29 patients with focal segmental glomerulosclerosis (FSGS), 10 patients with minimal change disease (MCD), 10 patients with membranous nephropathy (MN), and 11 patients with IgA nephropathy. The immunohistochemical peroxidase method was used to study the expression of CD44+ in kidney biopsies. Components of complement were analyzed in urine by the multiple reaction monitoring (MRM) approach using liquid chromatography. Strong CD44 expression was noted predominantly in PEC and mesangial cells (MC) in patients with FSGS, and to a lesser extent, in patients with MN and IgA nephropathy, and it was absent in patients with MCD. Expression of profibrogenic CD44+ in glomeruli correlated with the levels of proteinuria and complement C2, C3, and C9 components, and CFB and CFI in urine. The CD44+ expression scores in the renal interstitium correlated with the level of C3 and C9 components of complement in the urine and the area of tubulo-interstitial fibrosis. The strongest expression of CD44+ was found in the glomeruli (MC, PEC, and podocytes) of patients with FSGS compared with other glomerulopathies. The CD44 expression score in the glomeruli and interstitium is associated with high levels of complement components in the urine and renal fibrosis.


Subject(s)
Glomerulonephritis, IGA , Glomerulonephritis, Membranous , Glomerulonephritis , Glomerulosclerosis, Focal Segmental , Humans , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulonephritis/complications , Proteinuria , Chronic Disease , Hematuria , Fibrosis , Hyaluronan Receptors/metabolism
10.
Clin Nephrol ; 99(2): 78-84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36472403

ABSTRACT

BACKGROUND: Recently, evidence has emerged that the ubiquitin system, which is involved in extracellular protein degradation, is most susceptible to damage in podocytes in cases of podocytopathies. We studied anti-ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) antibodies in glomerulopathies with proteinuria. MATERIALS AND METHODS: 71 patients with glomerulopathy and 11 healthy subjects were included in our study. 44 patients had nephrotic syndrome, and 27 did not. Serum levels of anti-UCHL1 antibodies were measured by ELISA. RESULTS: The levels of anti-UCHL1 antibodies were significantly higher in focal segmental glomerulosclerosis (FSGS) patients than in minimal change disease (MCD), IgA nephropathy, membranous nephropathy, or membranoproliferative glomerulonephritis patients and control group. The levels of UCHL1 antibodies in serum did not correlate with 24-hour proteinuria, blood pressure, glomerulosclerosis percentage, or area of tubulointerstitial fibrosis, but did correlate with serum creatinine and estimated glomerular filtration rate (eGFR). During the development of the ROC curve (AUC = 0.766 (95% CI 0.634 - 0.897)) for FSGS vs. other forms of glomerulopathies, a readjustment of the sensitivity of 75% and specificity of 61% were established. A former increase in anti-UCHL1 antibody levels above 1.93 ng/mL may be a marker of FSGS OR 3.617 (95% CI 1.051 - 12.447), p = 0.041. CONCLUSION: An increase in the level of anti-UCHL1 antibodies in the serum was noted in FSGS, which suggests that these antibodies could be a potential biomarker for FSGS patients.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Humans , Proteasome Endopeptidase Complex , Cross-Sectional Studies , Ubiquitin , Proteinuria
11.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555683

ABSTRACT

Chronic liver diseases affect more than 1 billion people worldwide and represent one of the main public health issues. Nonalcoholic fatty liver disease (NAFLD) accounts for the majority of mortal cases, while there is no currently approved therapeutics for its treatment. One of the prospective approaches to NAFLD therapy is to use a mixture of natural compounds. They showed effectiveness in alleviating NAFLD-related conditions including steatosis, fibrosis, etc. However, understanding the mechanism of action of such mixtures is important for their rational application. In this work, we propose a new dereplication workflow for deciphering the mechanism of action of the lignin-derived natural compound mixture. The workflow combines the analysis of molecular components with high-resolution mass spectrometry, selective chemical tagging and deuterium labeling, liver tissue penetration examination, assessment of biological activity in vitro, and computational chemistry tools used to generate putative structural candidates. Molecular docking was used to propose the potential mechanism of action of these structures, which was assessed by a proteomic experiment.


Subject(s)
Deep Learning , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Lignin/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/analysis , Proteomics , Molecular Docking Simulation , Mass Spectrometry
12.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293475

ABSTRACT

Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score-depending on the proteinuria level, the third score-resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more-in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Humans , Nephrosis, Lipoid/diagnosis , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Cystatin C/metabolism , Proteomics , Gelsolin/metabolism , Proteome/metabolism , Hemopexin/metabolism , Vitronectin/metabolism , Complement Factor I/metabolism , Vitamin A/metabolism , Biomarkers , Steroids , Vitamin D
13.
Biochemistry (Mosc) ; 87(8): 762-776, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36171657

ABSTRACT

Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnosis , Humans , Proteomics , tau Proteins
14.
Mol Cell Proteomics ; 21(10): 100277, 2022 10.
Article in English | MEDLINE | ID: mdl-35931319

ABSTRACT

The recent surge of coronavirus disease 2019 (COVID-19) hospitalizations severely challenges healthcare systems around the globe and has increased the demand for reliable tests predictive of disease severity and mortality. Using multiplexed targeted mass spectrometry assays on a robust triple quadrupole MS setup which is available in many clinical laboratories, we determined the precise concentrations of hundreds of proteins and metabolites in plasma from hospitalized COVID-19 patients. We observed a clear distinction between COVID-19 patients and controls and, strikingly, a significant difference between survivors and nonsurvivors. With increasing length of hospitalization, the survivors' samples showed a trend toward normal concentrations, indicating a potential sensitive readout of treatment success. Building a machine learning multi-omic model that considers the concentrations of 10 proteins and five metabolites, we could predict patient survival with 92% accuracy (area under the receiver operating characteristic curve: 0.97) on the day of hospitalization. Hence, our standardized assays represent a unique opportunity for the early stratification of hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Machine Learning , Hospitalization , ROC Curve , Retrospective Studies
15.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887259

ABSTRACT

Early recognition of the risk of Alzheimer's disease (AD) onset is a global challenge that requires the development of reliable and affordable screening methods for wide-scale application. Proteomic studies of blood plasma are of particular relevance; however, the currently proposed differentiating markers are poorly consistent. The targeted quantitative multiple reaction monitoring (MRM) assay of the reported candidate biomarkers (CBs) can contribute to the creation of a consistent marker panel. An MRM-MS analysis of 149 nondepleted EDTA-plasma samples (MHRC, Russia) of patients with AD (n = 47), mild cognitive impairment (MCI, n = 36), vascular dementia (n = 8), frontotemporal dementia (n = 15), and an elderly control group (n = 43) was performed using the BAK 125 kit (MRM Proteomics Inc., Canada). Statistical analysis revealed a significant decrease in the levels of afamin, apolipoprotein E, biotinidase, and serum paraoxonase/arylesterase 1 associated with AD. Different training algorithms for machine learning were performed to identify the protein panels and build corresponding classifiers for the AD prognosis. Machine learning revealed 31 proteins that are important for AD differentiation and mostly include reported earlier CBs. The best-performing classifiers reached 80% accuracy, 79.4% sensitivity and 83.6% specificity and were able to assess the risk of developing AD over the next 3 years for patients with MCI. Overall, this study demonstrates the high potential of the MRM approach combined with machine learning to confirm the significance of previously identified CBs and to propose consistent protein marker panels.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnosis , Biomarkers , Blood Proteins , Cognitive Dysfunction/diagnosis , Humans , Machine Learning , Mass Spectrometry , Proteomics
16.
Mass Spectrom Rev ; : e21775, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35347731

ABSTRACT

This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aß) peptides in human samples. Since Aß is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aß proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aß studies. However, Aß forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aß species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aß studies; and considers the potential of MS techniques for further studies of Aß-peptides.

17.
Int J Biol Macromol ; 206: 64-73, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35219777

ABSTRACT

In this study, we examined for the first time the effect of the HOCl/OCl-- and H2O2-induced oxidation of Glu-plasminogen on damage to its primary structure and the biological activity of plasmin. The consolidated results obtained with the aid of MS/MS, electrophoresis, and colourimetry, demonstrated that none of the oxidised amino acid residues found in the proenzyme treated with 25 µM HOCl/OCl- or 100 µM H2O2 were functionally significant for plasminogen. However, the treatment of plasminogen with increasing concentrations of HOCl/OCl- from 25 µM to 100 µM or H2O2 from 100 µM to 300 µM promoted a partial loss in the activity of oxidised plasmin. Several methionine residues (Met57, Met182, Met385, Met404, Met585, and Met788) localized in different protein domains have been shown to serve as ROS traps, thus providing an efficient defense mechanism against oxidative stress. Oxidised Trp235, Trp417, Trp427, Trp761, and Tyr672 are most likely responsible for the reduced biological activity of Glu-plasminogen subjected to strong oxidation. The results of the present study, along with those of previous studies, indicate that the structure of Glu-plasminogen is adapted to oxidation to withstand oxidative stress induced by ROS.


Subject(s)
Hypochlorous Acid , Plasminogen , Fibrinolysin , Hydrogen Peroxide , Hypochlorous Acid/chemistry , Peroxides , Plasminogen/chemistry , Tandem Mass Spectrometry
18.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35163759

ABSTRACT

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacteriological Techniques/instrumentation , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Membrane Transport Proteins/genetics , Bacteriological Techniques/methods , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial , Glycolysis , Glyoxylates/metabolism , Magnetic Phenomena , Oxygen/metabolism , Pyruvaldehyde/metabolism , Space Flight , Weightlessness
19.
Anal Chem ; 94(4): 2016-2022, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35040635

ABSTRACT

Mass spectrometry (MS)-based quantitative proteomic methods have become some of the major tools for protein biomarker discovery and validation. The recently developed parallel reaction monitoring-parallel accumulation-serial fragmentation (prm-PASEF) approach on a Bruker timsTOF Pro mass spectrometer allows the addition of ion mobility as a new dimension to LC-MS-based proteomics and increases proteome coverage at a reduced analysis time. In this study, a prm-PASEF approach was used for the multiplexed absolute quantitation of proteins in human plasma using isotope-labeled peptide standards for 125 plasma proteins, over a broad (104-106) dynamic range. Optimization of LC and MS parameters, such as accumulation time and collision energy, resulted in improved sensitivity for more than half of the targets (73 out of 125 peptides) by increasing the signal-to-noise ratio by a factor of up to 10. Overall, 41 peptides showed up to a 2-fold increase in sensitivity, 25 peptides showed up to a 5-fold increase in sensitivity, and 7 peptides showed up to a 10-fold increase in sensitivity. Implementation of the prm-PASEF method allowed absolute protein quantitation (down to 1.13 fmol) in human plasma samples. A comparison of the concentration values of plasma proteins determined by MRM on a QTRAP instrument and by prm-PASEF on a timsTOF Pro revealed an excellent correlation (R2 = 0.97) with a slope of close to 1 (0.99), demonstrating that prm-PASEF is well suited for "absolute" quantitative proteomics.


Subject(s)
Proteome , Proteomics , Blood Proteins , Humans , Mass Spectrometry , Peptides/analysis , Proteomics/methods
20.
Front Physiol ; 12: 760875, 2021.
Article in English | MEDLINE | ID: mdl-34867466

ABSTRACT

The study presents the results of evaluating the changes in the concentrations of blood plasma proteins associated with heart rate variability (HRV) in cosmonauts who have completed space missions lasting about 6months. The concentrations of 125 proteins were quantified in biological samples of the cosmonauts' blood plasma. The subgroups of proteins associated with the physiological processes of the HRV autonomic regulation were identified using bioinformatic resources (Immunoglobulin heavy constant mu, Complement C1q subcomponent subunit C, Plasma serine protease inhibitor, Protein-72kDa type IV collagenase, Fibulin-1, Immunoglobulin lambda constant 3). The concentration of these proteins in the blood plasma before the flight, and the dynamics of concentration changes on the 1st and 7th days of the post-flight rehabilitation period differed in the groups of cosmonauts with a predominance of sympathetic or parasympathetic modulating autonomous influences. The dynamics of changes in the concentrations of the identified set of proteins reveal that in cosmonauts with a predominance of sympathetic modulating influences, the mechanisms of autonomic regulation are exposed to significant stress in the recovery period immediately after the completion of the space mission, compared with the cosmonauts with a predominance of parasympathetic modulating influences.

SELECTION OF CITATIONS
SEARCH DETAIL
...