Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(18): 4377-4384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38657136

ABSTRACT

We have studied the excited states and structural properties for the complexes of cytosine (dC)10 chains with silver ions (Ag+) in a wide range of the Ag+ to DNA ratio (r) and pH conditions using circular dichroism, steady-state absorption, and fluorescence spectroscopy along with the ultrafast fluorescence upconversion technique. We also calculated vertical electronic transition energies and determined the nature of the corresponding excited states in some models of the cytosine-Ag+ complexes. We show that (dC)10 chains in the presence of silver ions form a duplex stabilized by C-Ag+-C bonds. It is also shown that the i-motif structure formed by (dC)10 chains is destabilized in the presence of Ag+ ions. The excited-state properties in the studied complexes depend on the amount of binding ions and the binding sites, which is supported by the calculations. In particular, new low-lying excited states appear when the second Ag+ ion interacts with the O atom of cytosine in the C-Ag+-C pairs. A similar picture is observed in the case when one Ag+ ion interacts with one cytosine via the N7 atom.


Subject(s)
Cytosine , Silver , Silver/chemistry , Cytosine/chemistry , DNA/chemistry , DNA, Single-Stranded/chemistry , Ions/chemistry , Circular Dichroism , Spectrometry, Fluorescence , Hydrogen-Ion Concentration , Nucleic Acid Conformation
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124004, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38341933

ABSTRACT

Nanomaterials are widely used nowadays in industry and medicine. The specific properties of gold nanoclusters (Au NCs) are chemical stability, low cytotoxicity, low photobleaching, high sensitivity to the molecular environment. This set of properties allows to use Au NCs as nanosensors in bioimaging and diagnostics. We have investigated gold cluster complexes with proteinogenic amino acid phenylalanine (Phe). Detection of phenylalanine is essential for diagnostics of phenylketonuria, vitiligo, sclerosis, cancer, tuberculosis, etc. We have studied the complexes of Phe with Aunq clusters with atomic number equal 1-6, 8, 20 and a charge equal 0-2. We have established that the clusters Au40, Au21+ and Au32+ form the most stable complexes with Phe among NCs with charge 0, +1 and + 2, respectively. Intracomplex interactions have been studied using Atoms-In-Molecules (AIM) theory and Natural Bond Orbital (NBO) analysis. It has been shown that metal-ligand intracomplex interactions are partially covalent and partially electrostatic. Also, we have simulated the UV-vis absorption and Raman spectra of the Phe-Au NCs. We have established that the clusters possess prospective features if being used for colorimetric and Raman detection of Phe. Au20 cluster is remarkable for its six-times enhancement of the Raman signal. Moreover, our study provides insights into metal-ligand interactions for clusters synthesized inside a polypeptide globula. Hence, to the best of our knowledge this is a first attempt to perform a detailed analysis of Phe interactions with gold using quantum chemical calculations.


Subject(s)
Amino Acids , Phenylalanine , Amino Acids/chemistry , Gold/chemistry , Ligands , Prospective Studies , Models, Theoretical
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122810, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37182251

ABSTRACT

L-DOPA, or l-3,4-dihydroxyphenylalanine is an aromatic amino acid, which plays a significant role in human metabolism as a precursor of important neurotransmitters. We develop a fast and simple colorimetric method for the detection of L-DOPA in biological fluids. The method is based on the reduction of silver ions with L-DOPA and the subsequent formation of L-DOPA stabilized silver nanoparticles (Ag NPs). In this novel approach, L-DOPA works as both reducing and stabilizing agent, which provides selectivity and simplifies the procedure. HR-TEM images show very narrow Ag NPs distribution with an average size of 24 nm. Such sensor design is suggested for the first time. We also calculate vertical ionization potential, vertical electron affinity, and Gibbs free energy change of different ionic forms of L-DOPA and amino acids at the M06-2X/def2-TZVP level for the gas phase in comparison with that of silver. A model of silver ions reduction by aromatic amino acids is proposed: the ionic forms with charge -1 are suggested to reduce silver ions. High selectivity against aromatic amino acids, dopamine and serotonin is achieved by tuning pH and involving two L-DOPA forms with charged both hydroxyphenolate and carboxylate groups in the stabilization of uniform-sized Ag NPs. The method is applicable for the determination of L-DOPA in human serum with the 50 nM limit of detection and the linear range up to 5 µM. Ag NPs formation and coloring the solution proceeds in a few minutes. The suggested colorimetric method has potential application in clinical trials.


Subject(s)
Levodopa , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Colorimetry/methods
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122796, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37156175

ABSTRACT

In this experimental study, we developed a simple and selective approach to determine the concentrations of human serum albumin (HSA) and total amount of immunoglobulins (Ig) in real human serum (HS) sample using luminescent gold nanoclusters (Au NCs). In doing so, Au NCs were grown directly on the HS proteins without any sample pretreatment. We synthesized Au NCs on HSA and Ig and studied their photophysical properties. Using combined fluorescent and colorimetric assay we were able to obtain protein concentrations with a high degree of accuracy relative to techniques currently used in clinical diagnostics. We used method of standard additions to determine both HSA and Ig concentrations in HS by the Au NCs absorbance and fluorescence signals. A simple and cost-effective method developed in this work represents an excellent alternative to the techniques currently used in clinical diagnostics.


Subject(s)
Gold , Metal Nanoparticles , Humans , Spectrometry, Fluorescence/methods , Immunoglobulins , Serum Albumin, Human , Coloring Agents
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121467, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35689845

ABSTRACT

Metal nanoclusters (NCs) are widely present today in biosensing, bioimaging, and diagnostics due to their small size, great biocompatibility, and sensitivity to the biomolecular environment. Silver (Ag) NCs often possess intense fluorescence, photostability, and low photobleaching, which is in high demand during the detection of organic molecules. Pterins are small compounds, which are used in medicine as biomarkers of oxidative stress, cardiovascular diseases, neurotransmitter synthesis, inflammation and immune system activation. It is experimentally possible to detect pterin (Ptr) through the adsorption on Ag colloid. We optimized geometries and evaluated the binding energy in Ptr-Agnq complexes (n = 1-6; q = 0, +1, +2) using quantum chemistry methods. Different Ptr atoms were preferential for silver attachment depending on NC charge and size. The highest Eb was obtained for the complexes between the Ptr0 and Ag32+ (-50.8 kcal mol-1), between Ptr-1 and Ag32+ (-64.8 kcal mol-1), which means that these complexes should be formed preferably in aqueous solutions in acidic and alkaline media, respectively. The colorimetric detection of pterin with silver clusters does not seem to be promising. However, intense S0→S1 transitions of Ag5+ complexes look promising for luminescent Ptr detection. SERS detection of pterin is better to be done at pH > 8 since deprotonated pterin Raman undergo more dramatic changes upon addition of Ag than the neutral pterin. The characteristics of absorption and vibrational spectra of silver-pterin should be exploited during biosensor development.


Subject(s)
Biosensing Techniques , Silver , Pterins/chemistry , Silver/chemistry , Spectrum Analysis , Water/chemistry
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054820

ABSTRACT

Tyrosine (Tyr) is involved in the synthesis of neurotransmitters, catecholamines, thyroid hormones, etc. Multiple pathologies are associated with impaired Tyr metabolism. Silver nanoclusters (Ag NCs) can be applied for colorimetric, fluorescent, and surface-enhanced Raman spectroscopy (SERS) detection of Tyr. However, one should understand the theoretical basics of interactions between Tyr and Ag NCs. Thereby, we calculated the binding energy (Eb) between Tyr and Agnq (n = 1-8; q = 0-2) NCs using the density functional theory (DFT) to find the most stable complexes. Since Ag NCs are synthesized on Tyr in an aqueous solution at pH 12.5, we studied Tyr-1, semiquinone (SemiQ-1), and Tyr-2. Ag32+ and Ag5+ had the highest Eb. The absorption spectrum of Tyr-2 significantly red-shifts with the attachment of Ag32+, which is prospective for colorimetric Tyr detection. Ag32+ interacts with all functional groups of SemiQ-1 (phenolate, amino group, and carboxylate), which makes detection of Tyr possible due to band emergence at 1324 cm-1 in the vibrational spectrum. The ground state charge transfer between Ag and carboxylate determines the band emergence at 1661 cm-1 in the Raman spectrum of the SemiQ-1-Ag32+ complex. Thus, the prospects of Tyr detection using silver nanoclusters were demonstrated.


Subject(s)
Amino Acids/analysis , Silver/chemistry , Tyrosine/chemistry , Isomerism , Metabolic Networks and Pathways , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Thermodynamics
7.
RSC Adv ; 10(56): 34149-34160, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519047

ABSTRACT

Metal nanoclusters (NCs) have gained much attention in the last decade. In solution, metal nanoclusters can be stabilized by proteins, and, thus, exhibit many advantages in biocatalysis, biosensing, and bioimaging. In spite of much progress in the synthesis of polypeptide-stabilized gold (Au) clusters, their structure, as well as amino acid-cluster and amino acid-Au+ interactions, remain poorly understood. It is not entirely clear which amino acid (AA) residues and sites in the protein are preferred for binding. The understanding of NC-protein interactions and how they evolve in the polypeptide templates is the key to designing Au NCs. In this work, binding of gold ion Au+ and diatomic neutral gold nanocluster Au2 with a full set of α-proteinogenic amino acids is studied using Density Functional Theory (DFT) and the ab initio RI-MP2 method in order to find the preferred sites of gold interaction in proteins. We demonstrated that the interaction of gold cations and clusters with protonated and deprotonated amino acid residues do not differ greatly. The binding affinity of AAs to the Au2 cluster increases in the following order: Cys(-H+) > Asp(-H+) > Tyr(-H+) > Glu(-H+) > Arg > Gln, His, Met ≫ Asn, Pro, Trp > Lys, Tyr, Phe > His(+H+) > Asp > Lys(+H+) > Glu, Leu > Arg(+H+) > Ile, Val, Ala > Thr, Ser > Gly, Cys, which agrees with the available experimental data that gold cluster synthesis occurs in a wide range of pH - amino acid residues with different protonation states are involved in this process. The significant difference in the binding energy of metal atoms with nucleobases and amino acids apparently means that unlike on DNA templates, neutral metal atoms are strongly bound to amino acid residues and can't freely diffuse in a polypeptide globula. This fact allows one to conclude that formation of metal NCs in proteins occurs through the nucleation of reduced Au atoms bound to the neighboring amino acid residues, and the flexibility of the amino acid residue side-chains and protein chain as a whole plays a significant role in this process.

8.
Sci Rep ; 9(1): 15988, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690734

ABSTRACT

We have studied the excited-state dynamics for the i-motif form of cytosine chains (dC)10, using the ultrafast fluorescence up-conversion technique. We have also calculated vertical electronic transition energies and determined the nature of the corresponding excited states in a model tetramer i-motif structure. Quantum chemical calculations of the excitation spectrum of a tetramer i-motif structure predict a significant (0.3 eV) red shift of the lowest-energy transition in the i-motif form relative to its absorption maximum, which agrees with the experimental absorption spectrum. The lowest excitonic state in i-(dC)10 is responsible for a 2 ps red-shifted emission at 370 nm observed in the decay-associated spectra obtained on the femtosecond time-scale. This delocalized (excitonic) excited state is likely a precursor to a long-lived excimer state observed in previous studies. Another fast 310 fs component at 330 nm is assigned to a monomer-like locally excited state. Both emissive states form within less than the available time resolution of the instrument (100 fs). This work contributes to the understanding of excited-state dynamics of DNA within the first few picoseconds, which is the most interesting time range with respect to unraveling the photodamage mechanism, including the formation of the most dangerous DNA lesions such as cyclobutane pyrimidine dimers.


Subject(s)
DNA/chemistry , DNA/genetics , Energy Transfer , Fluorescence , Kinetics , Nucleotide Motifs , Thermodynamics
9.
Amino Acids ; 51(5): 855-864, 2019 May.
Article in English | MEDLINE | ID: mdl-30900086

ABSTRACT

Binding of silver ion (Ag+) and two atomic neutral silver cluster (Ag2) with a set of amino acids has been studied using Density Functional Theory (DFT) and ab initio MP2 method. We show that binding energy with Ag2 is higher for deprotonated anionic amino acids. Cysteine, aspartic acid, and tyrosine with deprotonated side chain exhibit the highest binding energy (Gbind) values among all the amino acids: - 30.1 kcal mol-1, - 30.7 kcal mol-1, and - 30.9 kcal mol-1, respectively. Binding energies of deprotonated cysteine, glutamic acid, tyrosine, and aspartic acid with silver ion Ag+ are reported here for the first time. Natural bond orbital (NBO) analysis has also been performed to calculate charge transfer, natural populations, occupancies, and Wiberg bond indices of the amino acid-Ag2 complexes. Atoms-in-molecules (AIM) theory was used to establish the nature of interactions. It was shown that, in most cases, the bonds between amino acid and Ag2 cluster are partially electrostatic and partially covalent.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Quantum Theory , Silver/chemistry , Silver/metabolism , Hydrogen Bonding , Models, Molecular , Thermodynamics
10.
Nanoscale Adv ; 1(9): 3579-3583, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133554

ABSTRACT

In this experimental study fluorescent silver clusters on a tRNA matrix were synthesized for the first time. Two types of fluorescent complexes emitting in the green (550 nm) and red (635 nm) regions of the visible spectrum were obtained. Using FTIR spectroscopy, we identified possible binding sites for the clusters, which appeared to be within the helical regions of tRNA. It was also shown that tRNA retained its double helical structure after the cluster formation, which is essential for its functionality.

11.
Nucleic Acids Res ; 46(7): 3543-3551, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29186575

ABSTRACT

The ordered structure of UV chromophores in DNA resembles photosynthetic light-harvesting complexes in which quantum coherence effects play a major role in highly efficient directional energy transfer. The possible role of coherent excitons in energy transport in DNA remains debated. Meanwhile, energy transport properties are greatly important for understanding the mechanisms of photochemical reactions in cellular DNA and for DNA-based artificial nanostructures. Here, we studied energy transfer in DNA complexes formed with silver nanoclusters and with intercalating dye (acridine orange). Steady-state fluorescence measurements with two DNA templates (15-mer DNA duplex and calf thymus DNA) showed that excitation energy can be transferred to the clusters from 21 and 28 nucleobases, respectively. This differed from the DNA-acridine orange complex for which energy transfer took place from four neighboring bases only. Fluorescence up-conversion measurements showed that the energy transfer took place within 100 fs. The efficient energy transport in the Ag-DNA complexes suggests an excitonic mechanism for the transfer, such that the excitation is delocalized over at least four and seven stacked bases, respectively, in one strand of the duplexes stabilizing the clusters. This result demonstrates that the exciton delocalization length in some DNA structures may not be limited to just two bases.


Subject(s)
DNA/chemistry , Energy Transfer/radiation effects , Nucleic Acid Conformation/radiation effects , Acridine Orange/chemistry , Animals , Cattle , DNA/genetics , DNA/radiation effects , Fluorescence , Nanostructures/chemistry , Photosynthesis/genetics , Photosynthesis/radiation effects , Quantum Theory , Silver/chemistry , Ultraviolet Rays
12.
J Phys Chem B ; 121(11): 2400-2406, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28252973

ABSTRACT

The rapidly developing field of bionanotechnology requires detailed knowledge of the mechanisms of interaction between inorganic matter and biomolecules. Under conditions different from those in an aqueous solution, however, the chemistry of these systems is elusive and may differ dramatically from their interactions in vitro and in vivo. Here, we report for the first time a photoemission study of a metal silver-DNA interface, formed in vacuo, in comparison with DNA-Ag+ and fluorescent DNA-Ag complexes formed in solution. The high-resolution photoelectron spectra reveal that in vacuo silver atoms interact mainly with oxygen atoms of the phosphodiester bond and deoxyribose in DNA, in contrast to the behavior of silver ions, which interact preferentially with the nitrogen atoms of the bases. This offers new insight into the mechanism of DNA metallization, which is of importance in creating metal-bio interfaces for nanotechnology applications.


Subject(s)
Cations, Monovalent/chemistry , DNA/chemistry , Silver Nitrate/chemistry , Silver/chemistry , Fluorescence , Nitrogen/chemistry , Oxygen/chemistry , Photoelectron Spectroscopy
13.
J Phys Chem Lett ; 7(18): 3560-6, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27564452

ABSTRACT

Ligand-stabilized luminescent metal clusters, in particular, DNA-based Ag clusters, are now employed in a host of applications such as sensing and bioimaging. Despite their utility, the nature of their excited states as well as detailed structures of the luminescent metal-ligand complexes remain poorly understood. We apply a new joint experimental and theoretical approach based on QM/MM-MD simulations of the fluorescence excitation spectra for three Ag clusters synthesized on a 12-mer DNA. Contrary to a previously proposed "rod-like" model, our results show that (1) three to four Ag atoms suffice to form a partially oxidized nanocluster emitting in visible range; (2) charge transfer from Ag cluster to DNA contributes to the excited states of the complexes; and (3) excitation spectra of the clusters are strongly affected by the bonding of Ag atoms to DNA bases. The presented approach can also provide a practical way to determine the structure and properties of other luminescent metal clusters.


Subject(s)
Coordination Complexes/chemistry , DNA/chemistry , Nanotubes/chemistry , Silver/chemistry , Models, Molecular
14.
J Am Chem Soc ; 137(36): 11656-65, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26312774

ABSTRACT

Direct DNA absorption of UVB photons in a spectral range of 290-320 nm of terrestrial solar radiation is responsible for formation of cyclobutane pyrimidine dimers causing skin cancer. Formation of UVB-induced lesions is not random, and conformational features of their hot spots remain poorly understood. We calculated the electronic excitation spectra of thymine, cytosine, and adenine stacked dimers with ab initio methods in a wide range of conformations derived from PDB database and molecular dynamics trajectory of thymine-containing oligomer. The stacked dimers with reduced interbase distances in curved, hairpin-like, and highly distorted DNA and RNA structures exhibit excitonic transitions red-shifted up to 0.6 eV compared to the B-form of stacked bases, which makes them the preferred target for terrestrial solar radiation. These results might have important implications for predicting the hot spots of UVB-induced lesions in nucleic acids.


Subject(s)
Nucleic Acids/chemistry , Ultraviolet Rays , Dimerization , Molecular Dynamics Simulation , Thymine/chemistry
15.
Chemphyschem ; 14(15): 3543-50, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24106036

ABSTRACT

We study the formation and fluorescent properties of silver nanoclusters encapsulated in condensed DNA nanoparticles. Fluorescent globular DNA nanoparticles are formed using a dsDNA-cluster complex and polyallylamine as condensing agents. The fluorescence emission spectrum of single DNA nanoparticles is obtained using tip-enhanced fluorescence microscopy. Fluorescent clusters in condensed DNA nanoparticles appear to be more protected against destructive damage in solution compared to clusters synthesized on a linear polymer chain. The fluorescent clusters on both dsDNA and ssDNA exhibit the same emission bands (at 590 and 680 nm) and the same formation efficiency, which suggests the same binding sites. By using density functional theory, we show that the clusters may bind to the Watson-Crick guanine-cytosine base pairs and to single DNA bases with about the same affinity.


Subject(s)
DNA/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Polyamines/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...