Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38535639

ABSTRACT

In the past two decades, many studies on piezoelectric nanofibers (NFs) prepared from poly(vinylidene fluoride) (PVDF) and its copolymers, including single NFs, randomly oriented nonwoven mats, and aligned NFs, have been reported. However, studies on the relationships between the PVDF NF diameter, the orientation of the ß-phase crystals inside NFs, and the piezoelectric properties of the NFs are still limited. In this study, the effect of the fiber diameter on the internal molecular packing/orientation and piezoelectric properties of aligned PVDF NF thin films was investigated. Herein, piezoelectric thin films composed of densely packed, uniaxially aligned, PVDF NFs with diameters ranging from 228 to 1315 nm were prepared by means of electrospinning with a rotating collector and successive hot-pressing and poling. The effect of the diameters of PVDF NFs on their internal structures, as well as the piezoelectric properties of the thin films, was investigated. All prepared NFs mainly contained ß-phase crystals with a similar total crystallinity. The orientation of the ß-phase crystals inside the NFs increased with an increase in the fiber diameter, resulting in an improved transverse piezoelectric coefficient (d31) for the thin films. The output voltage of the prepared thin films reached a maximum of 2.7 V at 104 Hz.

2.
Langmuir ; 34(43): 13035-13040, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30293431

ABSTRACT

Poly(vinyl alcohol) (PVA)-based ion-exchange nanofibers (IEX-NFs) and their composite polyelectrolyte membranes were prepared and characterized. The PVA-based NFs are well dispersed and form a three-dimensional network structure in the polymer matrix, Nafion. All of the prepared membranes show a similar ion-exchange capacity of ∼1.0 mmol g-1. The ionic conductivities through the PVA- b-PSS-NF/Nafion composite membranes are superior to that of the Nafion membranes, but the conductivity through the PVA-NF/Nafion composite membrane is half that of the Nafion membrane. Our electrokinetic measurements clearly indicate that a high density of ion-exchange groups on the NF surface results in a continuous ionic transport path in the polymer matrix. In addition, the mechanical strength of all of the NF-composite membranes is improved compared with that of the membranes without NF.

3.
ACS Omega ; 2(3): 835-841, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-31457475

ABSTRACT

In the present study, surface amino-functionalized silica nanofibers (f-SiO2NFs, average diameter = 400 and 1000 nm) are used as one-dimensional (1-D) fillers of ionic liquid (IL)-based quasisolid electrolytes. On adding f-SiO2NFs to an IL (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, EMITFSA) containing lithium bis(trifluoromethanesulfonyl)-amide (LiTFSA), the well-dispersed 1-D nanofillers easily form a three-dimensional network structure in the IL, function as physical cross-linkers, and increase the viscosity of the composites, consequently providing a quasisolid state at a 3.5 wt % fraction of the NFs. Rheological measurements demonstrate that the prepared composites exhibit "gel-like" characteristics at 40-150 °C. All prepared composites show high ionic conductivities, on the order of 10-3 S cm-1, around room temperature. To investigate the additive effect of f-SiO2NFs in the composites, the lithium transference numbers are also evaluated. It is found that thinner NFs enhance the transference numbers of the composites. In addition, quasisolid lithium-ion cells containing the prepared composites demonstrate relatively high rate characteristics and good cycling performance at high temperature (125 °C).

4.
ACS Appl Mater Interfaces ; 5(13): 6225-31, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23763449

ABSTRACT

The graphene nanoribbon (GNR)/carbon composite nanofiber yarns were prepared by electrospinning from poly(acrylonitrile) (PAN) containing graphene oxide nanoribbons (GONRs), and successive twisting and carbonization. The electrospinning process can exert directional shear force coupling with the external electric field to the flow of the spinning solution. During electrospinning, the well-dispersed GONRs were highly oriented along the fiber axis in an electrified thin liquid jet. The addition of GONRs at a low weight fraction significantly improved the mechanical properties of the composite nanofiber yarns. In addition, the carbonization of the matrix polymer enhanced not only the mechanical but also the electrical properties of the composites. The electrical conductivity of the carbonized composite yarns containing 0.5 wt % GONR showed the maximum value of 165 S cm(-1). It is larger than the maximum value of the reported electrospun carbon composite yarns. Interestingly, it is higher than the conductivities of both the PAN-based pristine CNF yarns (77 S cm(-1)) and the monolayer GNRs (54 S cm(-1)). These results and Raman spectroscopy supported the hypothesis that the oriented GONRs contained in the PAN nanofibers effectively functioned as not only the 1-D nanofiller but also the nanoplatelet promoter of stabilization and template agent for the carbonization.

5.
Langmuir ; 27(24): 14716-20, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22098173

ABSTRACT

This letter reports the enhancing effects of a nanofiber network structure on stimuli-responsive wettability switching. Thermoresponsive coatings composed of nanofibers were prepared by electrospinning from thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm). The nanofiber coatings showed a large amplitude of thermoresponsive change in the wettability from hydrophilic to hydrophobic states compared to a smooth cast film. In particular, the combination of the surface chemistry and unique topology of the electrospun nanofiber coatings enables a transition from the Wenzel state to the metastable Cassie-Baxter state with an increase in temperature and consequently an enhanced amplitude of change in the water contact angles: the apparent contact angle differences between 25 and 50 °C are Δθ*(25-50 °C )= 108 and 10° for the nanofiber coatings with a diameter of 830 nm and a smooth cast film, respectively. The fabrication of the 3D nanofiber network structure by electrospinning from stimuli-responsive materials is a promising option for highly responsive surfaces in wettability.

6.
ACS Appl Mater Interfaces ; 3(2): 469-75, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21268647

ABSTRACT

Multiwalled carbon nanotube (MWNT)/poly(vinyl butyral) (PVB) composite nanofibers were prepared by electrospinning, successive twisting and heat treatment. The MWNTs were highly oriented in an electrified thin jet during electrospinning. The heat treatment of the twisted electrospun nanofiber yarns produced the characteristics of the CNT in the composite nanofiber yarns and enhanced their electrical properties, mechanical properties, and thermal properties. The electrical conductivity of the heated yarn was significantly enhanced and showed the maximum value of 154 S cm(-1) for the yarn heated at 400 °C. It is an order of magnitude higher than other electrospun CNT composite materials. These results demonstrated that the novel top-down process based on electrospinning, twisting, and heat treatment provide a promising option for simple and large-scale manufacture of CNT assemblies.

7.
J Colloid Interface Sci ; 309(2): 272-8, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17336319

ABSTRACT

Membrane potential measurement has been widely used for the characterization of ionic membranes such as ion-exchange membranes without solvent permeability. However, there have been few studies on membrane potentials across pressure-driven processes such as reverse osmosis (RO) membranes with solvent permeability. In the present study, the membrane potential across RO membranes in NaCl and MgCl2 under the pressure gradient, DeltaP=0-0.3 MPa, was measured. The experimental results were analyzed by the theoretical model based on the Donnan equilibrium and the extended Nernst-Planck flux equation considering the pressure effect. The theoretical values agreed well with the experimental ones. This indicates that membrane potential is useful for characterizing the effective charge density of the active layer of RO membranes under pressure gradient.

8.
J Colloid Interface Sci ; 286(1): 288-93, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15848430

ABSTRACT

The membrane potential across anion-exchange membranes in H2SO4 and Na2SO4 solutions was measured, and the experimental results were fitted to the theory in the 2-1 electrolyte system based on the Donnan equilibrium and the Nernst-Planck flux equations. For the Na2SO4 solution, the Donnan potential makes a significant contribution to the membrane potential, but for the H2SO4 solution, the diffusion potential significantly contributes to the membrane potential. The diffusion potential has a greater contribution to the membrane potential across AEM-2 with a high water content than that across AEM-1. These results suggest that a proton with a high mobility can move without substantial influence of electrostatic interaction in a positively charged membrane.

9.
J Colloid Interface Sci ; 279(2): 484-92, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15464815

ABSTRACT

Nanostructured thin films were prepared by electrospray deposition (ESD) from poly(ethylene oxide) (PEO) aqueous solution. The surface morphologies of the deposited films were observed using scanning electron microscopy (SEM). The SEM images revealed the correlations between the morphologies and the ESD conditions. By changing the applied voltage and solution properties such as viscosity, surface tension, conductivity, and molecular weight, PEO thin films with diverse nanostructures--from nanospheres to nanofibers--were fabricated. It was also revealed that the addition of alcohols to polymer solution, which enables simultaneously changing the viscosity, the surface tension, and the conductivity, enhanced the formation of the fibrous structure. These results indicate that the ESD method is potentially a useful option for producing nanoengineered polymer surface.


Subject(s)
Alcohols/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Electric Conductivity , Membranes, Artificial , Microscopy, Electron, Scanning/methods , Molecular Weight , Static Electricity , Surface Properties , Surface Tension , Viscosity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...