Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013858

ABSTRACT

The main regularities in the impact of varying intensity impact-oscillatory loading on the variation of the mechanical and structural properties of the VT23 high-strength two-phase transverse-rolled sheet titanium alloy have been found. The intensity of the impulse introduction of energy into the alloy under the dynamic non-equilibrium process (DNP) was estimated by εimp (the increment of dynamic strain). The pulse intensity was found to change the shape of the static strain diagram with further tensioning, as compared to the initial state. This indicates the effect from the structure self-organization inherent in the VT23 titanium alloy upon the DNP. After the DNP (εimp = 1.44%), with further static deformation, the tensile diagram revealed yield sites up to 6.5% long. In most cases, the DNP was found to have a negative effect on the variation of the mechanical properties of the VT23 titanium alloy, especially if the latter was rolled in the transverse direction. The optimal DNP intensity is εimp~1.5%. In this case, the DNP can be used as an effective plasticization technology for the VT23 titanium alloy (regardless of the rolling direction) in the stamping of high-strength titanium alloys. Changes in the mechanical and structural condition of the VT23 titanium alloy subjected to the DNP were confirmed by the fractographic investigation of specimen fractures.

2.
Materials (Basel) ; 12(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247954

ABSTRACT

The authors developed a method for the automated detection and calculation of quantitative parameters of dimples of ductile fracture on the digital images of fracture surfaces obtained at different scales. The processing algorithm of fractographic images was proposed, which allowed high quality recognition of the shape and size of dimples to be achieved, taking into account the morphological features of their digital images. The developed method for identifying dimples of various physical and morphological characteristics was tested on the VT23M alloy. The test results showed that the method meets the quality requirements for the automated diagnostics of fracture mechanisms of titanium alloys.

3.
Materials (Basel) ; 12(3)2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30764509

ABSTRACT

Regularities of steel structure degradation of the "Novopskov-Aksay-Mozdok" gas main pipelines (Nevinnomysskaya CS) as well as the "Gorky-Center" pipelines (Gavrilovskaya CS) were studied. The revealed peculiarities of their degradation after long-term operation are suggested to be treated as a particular case of the damage accumulation classification (scheme) proposed by prof. H.M. Nykyforchyn. It is shown that the fracture surface consists of sections of ductile separation and localized zones of micro-spalling. The presence of the latter testifies to the hydrogen-induced embrittlement effect. However, the steels under investigation possess sufficiently high levels of the mechanical properties required for their further safe exploitation, both in terms of durability and cracking resistance.

4.
Materials (Basel) ; 11(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563063

ABSTRACT

The research of fractographic images of metals is an important method that allows obtaining valuable information about the physical and mechanical properties of a metallic specimen, determining the causes of its fracture, and developing models for optimizing its properties. One of the main lines of research in this case is studying the characteristics of the dimples of viscous detachment, which are formed on the metal surface in the process of its fracture. This paper proposes a method for detecting dimples of viscous detachment on a fractographic image, which is based on using a convolutional neural network. Compared to classical image processing algorithms, the use of the neural network significantly reduces the number of parameters to be adjusted manually. In addition, when being trained, the neural network can reveal a lot more characteristic features that affect the quality of recognition in a positive way. This makes the method more versatile and accurate. We investigated 17 models of convolutional neural networks with different structures and selected the optimal variant in terms of accuracy and speed. The proposed neural network classifies image pixels into two categories: "dimple" and "edge". A transition from a probabilistic result at the output of the neural network to an unambiguously clear classification is proposed. The results obtained using the neural network were compared to the results obtained using a previously developed algorithm based on a set of filters. It has been found that the results are very similar (more than 90% similarity), but the neural network reveals the necessary features more accurately than the previous method.

SELECTION OF CITATIONS
SEARCH DETAIL
...