Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 74(5): 2108-13, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19199509

ABSTRACT

The reaction of ozone with aldehydes has been studied intermittently for over 100 years, but its mechanism remains uncertain. Experimental results support two reaction channels: radical abstraction of the acyl hydrogen and addition to form a five-membered ring tetroxolane. We have studied the aldehyde-ozone reaction by DFT and CCSD(T) calculations. CCSD(T)/6-311+G(d,p)//M05-2X)/6-311+G(d,p) calculations predict two competitive pathways for the oxidation of formaldehyde by ozone. Abstraction of the acyl hydrogen by ozone has a barrier of 16.2 kcal/mol, leading to a radical pair, which can combine to form a hydrotrioxide; this species may subsequently decompose to a carboxylic acid and singlet oxygen. In the second reaction channel, addition of ozone to the carbonyl is stepwise, with barriers of 19.1 and 23.0 kcal/mol, leading to a five-membered ring tetroxolane intermediate. This process may be reversible, consistent with earlier observations of isotopic exchange. The two channels connect by an intramolecular hydrogen abstraction. Ring opening of the tetroxolane by an alternate O-O bond cleavage, followed by spin inversion in the resulting diradical intermediate, can give a carbonyl oxide plus (3)O(2). It is also possible that reaction of triplet oxygen with carbonyl oxides can produce ozone by the reverse route. These two stepwise reaction channels, hydrogen abstraction and addition to the C=O bond, explain much of what has been observed in the long history of ozone-aldehyde chemistry. Known reaction rates and the substantial barriers to both channels support an earlier conclusion that aldehyde oxidation by ozone is too slow to be of importance in atmospheric chemistry.


Subject(s)
Aldehydes/chemistry , Oxides/chemical synthesis , Ozone/chemistry , Computer Simulation , Molecular Structure , Oxidation-Reduction , Oxides/chemistry
2.
J Org Chem ; 71(15): 5708-14, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16839152

ABSTRACT

Isodesmic and homodesmic equations at the B3LYP/6-311+G(d,p)+ZPVE level of theory have been used to estimate strain for the homologous series of cyclic allenes and cyclic butatrienes. A simple fragment deformation approach also has been applied and appears to work better for the larger rings. For the cyclic allene series, estimates for allene functional group strain (kcal/mol) include: 1,2-cyclobutadiene, 65; 1,2-cyclopentadiene, 51; 1,2-cyclohexadiene, 32; 1,2-cycloheptadiene, 14; 1,2-cyclooctadiene, 5; 1,2-cyclononadiene, 2; 1,2,4-cyclohexatriene, 34; and bicyclo[3.2.1]octa-2,3-diene, 39. For cyclic butatrienes, functional group strain estimates include: 1,2,3-cyclobutatriene, >100; 1,2,3-cyclopentatriene, 80; 1,2,3-cyclohexatriene, 50; 1,2,3-cycloheptatriene, 26; 1,2,3-cyclooctatriene, 17; and 1,2,3-cyclononatriene, 4. Barriers to interconversion of enantiomers in cyclic allenes are reduced with increasing strain. Newly predicted values include: 1,2-cyclopentadiene <1 kcal/mol and bicyclo[3.2.1]octa-2,3-diene, 7.4 kcal/mol. Estimated levels of strain parallel the known reactivity of these substances.

SELECTION OF CITATIONS
SEARCH DETAIL
...