Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
EMBO J ; 43(10): 2035-2061, 2024 May.
Article in English | MEDLINE | ID: mdl-38627600

ABSTRACT

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Subject(s)
Phosphatidylinositols , Phospholipid Transfer Proteins , Humans , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Cell Membrane/metabolism , HeLa Cells , Organelles/metabolism , Endosomes/metabolism , Animals
2.
Nat Chem Biol ; 18(10): 1076-1086, 2022 10.
Article in English | MEDLINE | ID: mdl-35788180

ABSTRACT

The Hippo pathway plays a key role in development, organ size control and tissue homeostasis, and its dysregulation contributes to cancer. The LATS tumor suppressor kinases phosphorylate and inhibit the YAP/TAZ transcriptional co-activators to suppress gene expression and cell growth. Through a screen of marine natural products, we identified microcolin B (MCB) as a Hippo activator that preferentially kills YAP-dependent cancer cells. Structure-activity optimization yielded more potent MCB analogs, which led to the identification of phosphatidylinositol transfer proteins α and ß (PITPα/ß) as the direct molecular targets. We established a critical role of PITPα/ß in regulating LATS and YAP. Moreover, we showed that PITPα/ß influence the Hippo pathway via plasma membrane phosphatidylinositol-4-phosphate. This study uncovers a previously unrecognized role of PITPα/ß in Hippo pathway regulation and as potential cancer therapeutic targets.


Subject(s)
Biological Products , Neoplasms , Humans , Hippo Signaling Pathway , Phosphatidylinositols , Phospholipid Transfer Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors/metabolism
3.
Mol Cancer Ther ; 20(6): 986-998, 2021 06.
Article in English | MEDLINE | ID: mdl-33850002

ABSTRACT

Mutations in the neurofibromatosis type 2 (NF2) gene that limit or abrogate expression of functional Merlin are common in malignant mesothelioma. Merlin activates the Hippo pathway to suppress nuclear translocation of YAP and TAZ, the major effectors of the pathway that associate with the TEAD transcription factors in the nucleus and promote expression of genes involved in cell proliferation and survival. In this article, we describe the discovery of compounds that selectively inhibit YAP/TAZ-TEAD promoted gene transcription, block TEAD auto-palmitoylation, and disrupt interaction between YAP/TAZ and TEAD. Optimization led to potent analogs with excellent oral bioavailability and pharmacokinetics that selectively inhibit NF2-deficient mesothelioma cell proliferation in vitro and growth of subcutaneous tumor xenografts in vivo These highly potent and selective TEAD inhibitors provide a way to target the Hippo-YAP pathway, which thus far has been undruggable and is dysregulated frequently in malignant mesothelioma and in other YAP-driven cancers and diseases.


Subject(s)
Mesothelioma, Malignant/drug therapy , TEA Domain Transcription Factors/antagonists & inhibitors , Animals , Cell Proliferation , Humans , Lipoylation , Mesothelioma, Malignant/genetics , Mice , Signal Transduction
4.
ChemMedChem ; 14(16): 1560-1572, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31283109

ABSTRACT

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30 mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Diynes/pharmacology , Enzyme Inhibitors/pharmacology , Heart/drug effects , Hydroxamic Acids/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Bacterial Proteins/antagonists & inhibitors , Cardiotoxicity , Diynes/chemical synthesis , Diynes/pharmacokinetics , Diynes/toxicity , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/toxicity , Male , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/toxicity , Pseudomonas aeruginosa/drug effects , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 23(16): 4674-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23856050

ABSTRACT

The structure activity relationship of the prime region of conformationally restricted hydroxyethylamine (HEA) BACE inhibitors is described. Variation of the P1' region provided selectivity over Cat-D with a series of 2,2-dioxo-isothiochromanes and optimization of the P2' substituent of chromane-HEA(s) with polar substituents provided improvements in the compound's in vitro permeability. Significant potency gains were observed with small aliphatic substituents such as methyl, n-propyl, and cyclopropyl when placed at the C-2 position of the chromane.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Chromans/chemistry , Drug Design , Enzyme Inhibitors/chemical synthesis , Binding Sites , Cells, Cultured , Ethylamines/chemical synthesis , Ethylamines/chemistry , Ethylamines/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship
6.
ChemMedChem ; 8(8): 1295-313, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23794260

ABSTRACT

Polo-like kinase-2 (Plk-2) has been implicated as the dominant kinase involved in the phosphorylation of α-synuclein in Lewy bodies, which are one of the hallmarks of Parkinson's disease neuropathology. Potent, selective, brain-penetrant inhibitors of Plk-2 were obtained from a structure-guided drug discovery approach driven by the first reported Plk-2-inhibitor complexes. The best of these compounds showed excellent isoform and kinome-wide selectivity, with physicochemical properties sufficient to interrogate the role of Plk-2 inhibition in vivo. One such compound significantly decreased phosphorylation of α-synuclein in rat brain upon oral administration and represents a useful probe for future studies of this therapeutic avenue toward the potential treatment of Parkinson's disease.


Subject(s)
Brain/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , alpha-Synuclein/metabolism , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Female , HEK293 Cells , Half-Life , Humans , Male , Mice , Molecular Dynamics Simulation , Phosphorylation/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley
8.
Bioorg Med Chem Lett ; 23(14): 4117-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23743283

ABSTRACT

Mitsunobu reactions were employed to link t-butyl esters of α4 integrin inhibitors at each of the termini of a three-arm, 40 kDa, branched PEG. Cleavage of the t-butyl esters using HCO2H provided easily isolated PEG derivatives, which are potent α4 integrin inhibitors, and which achieve sustained levels and bioactivity in vivo, following subcutaneous administration to rats.


Subject(s)
Integrin alpha4/chemistry , Polyethylene Glycols/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Esters , Half-Life , Humans , Injections, Subcutaneous , Integrin alpha4/immunology , Integrin alpha4/metabolism , Jurkat Cells , Rats
9.
J Med Chem ; 56(13): 5261-74, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23713656

ABSTRACT

Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aß generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials. The in vitro and in vivo characteristics for these two compounds are described. A comparison of inhibition of Aß generation in vivo between 30, 34, Semagacestat 41, Begacestat 42, and Avagacestat 43 in mice is made. 30 lowered Aß in the CSF of healthy human volunteers.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptors, Notch/antagonists & inhibitors , Sulfonamides/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Animals , Area Under Curve , Basic Helix-Loop-Helix Transcription Factors/genetics , Dogs , Dose-Response Relationship, Drug , Drug Design , Drug Stability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Gene Expression/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Homeodomain Proteins/genetics , Humans , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Models, Chemical , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism , Structure-Activity Relationship , Sulfonamides/chemistry , Time Factors , Transcription Factor HES-1
10.
Bioorg Med Chem Lett ; 23(10): 3070-4, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23562062
11.
Bioorg Med Chem Lett ; 23(7): 2181-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23465612

ABSTRACT

The structure-activity relationship of a series of dihydroisoquinoline BACE-1 inhibitors is described. Application of structure-based design to screening hit 1 yielded sub-micromolar inhibitors. Replacement of the carboxylic acid of 1 was guided by X-ray crystallography, which allowed the replacement of a key water-mediated hydrogen bond. This work culminated in compounds such as 31, which possess good BACE-1 potency, excellent permeability and a low P-gp efflux ratio.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid/chemistry , Drug Design , Isoquinolines/pharmacology , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Catalysis , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 23(9): 2743-9, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23522834

ABSTRACT

Polo-like kinase-2 (Plk-2) is a potential therapeutic target for Parkinson's disease and this Letter describes the SAR of a series of dihydropteridinone based Plk-2 inhibitors. By optimizing both the N-8 substituent and the biaryl region of the inhibitors we obtained single digit nanomolar compounds such as 37 with excellent selectivity for Plk-2 over Plk-1. When dosed orally in rats, compound 37 demonstrated a 41-45% reduction of pS129-α-synuclein levels in the cerebral cortex.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Brain/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , HEK293 Cells , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Pteridines/chemical synthesis , Pteridines/chemistry , Pteridines/pharmacokinetics , Rats , Structure-Activity Relationship , Polo-Like Kinase 1
14.
Bioorg Med Chem Lett ; 21(19): 5791-4, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21885276

ABSTRACT

The structure-activity relationship (SAR) of a novel, potent and metabolically stable series of sulfonamide-pyrazoles that attenuate ß-amyloid peptide synthesis via γ-secretase inhibition is detailed herein. Sulfonamide-pyrazoles that are efficacious in reducing the cortical Aßx-40 levels in FVB mice via a single PO dose, as well as sulfonamide-pyrazoles that exhibit selectivity for inhibition of APP versus Notch processing by γ-secretase, are highlighted.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Inhibitory Concentration 50 , Mice , Mice, Inbred Strains , Structure-Activity Relationship , Sulfonamides/chemistry
15.
Bioorg Med Chem Lett ; 21(18): 5521-7, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21813278

ABSTRACT

The SAR of a series of brain penetrant, trisubstituted thiophene based JNK inhibitors with improved pharmacokinetic properties is described. These compounds were designed based on information derived from metabolite identification studies which led to compounds such as 42 with lower clearance, greater brain exposure and longer half life compared to earlier analogs.


Subject(s)
Brain/metabolism , Drug Design , Nerve Degeneration/prevention & control , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Thiophenes/pharmacology , Thiophenes/pharmacokinetics , Animals , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Dose-Response Relationship, Drug , Half-Life , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
16.
Bioorg Med Chem Lett ; 21(12): 3715-20, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21571529

ABSTRACT

Herein we describe the structure-activity relationship (SAR) of amino-caprolactam analogs derived from amino-caprolactam benzene sulfonamide 1, highlighting affects on the potency of γ-secretase inhibition, selectivity for the inhibition of APP versus Notch processing by γ-secretase and selected pharmakokinetic properties. Amino-caprolactams that are efficacious in reducing the cortical Aß(x-40) levels in FVB mice via a single 100 mpk IP dose are highlighted.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Caprolactam/analogs & derivatives , Enzyme Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Caprolactam/chemical synthesis , Caprolactam/chemistry , Caprolactam/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Infusions, Parenteral , Inhibitory Concentration 50 , Mice , Molecular Structure , Peptide Fragments/metabolism
17.
Bioorg Med Chem Lett ; 21(12): 3726-9, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21570836

ABSTRACT

In this Letter, we describe the evolution of selective JNK3 inhibitors from 1, that routinely exhibit >10-fold selectivity over JNK1 and >1000-fold selectivity over related MAPKs. Strong SAR was found for substitution of the naphthalene ring, as well as for inhibitors adopting different central scaffolds. Significant potency gains were appreciated by inverting the polarity of the thione of the parent triazolothione 1, resulting in potent compounds with attractive pharmacokinetic profiles.


Subject(s)
Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Naphthalenes/chemical synthesis , Thiones/chemical synthesis , Animals , Cells, Cultured , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/enzymology , Molecular Structure , Naphthalenes/chemistry , Naphthalenes/pharmacology , Solubility , Structure-Activity Relationship , Thiones/chemistry , Thiones/pharmacology
19.
Bioorg Med Chem Lett ; 21(6): 1838-43, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316234

ABSTRACT

The SAR of a series of tri-substituted thiophene JNK3 inhibitors is described. By optimizing both the N-aryl acetamide region of the inhibitor and the 4-position of the thiophene we obtained single digit nanomolar compounds, such as 47, which demonstrated an in vivo effect on JNK activity when dosed orally in our kainic acid mouse model as measured by phospho-c-jun reduction.


Subject(s)
Brain/metabolism , MAP Kinase Kinase 4/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Administration, Oral , Drug Design , Hydrogen Bonding , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 21(1): 315-9, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21112785

ABSTRACT

In this Letter, we describe the discovery of selective JNK2 and JNK3 inhibitors, such as 10, that routinely exhibit >10-fold selectivity over JNK1 and >1000-fold selectivity over related MAPKs, p38α and ERK2. Substitution of the naphthalene ring affords an isoform selective JNK3 inhibitor, 30, with approximately 10-fold selectivity over both JNK1 and JNK2. A naphthalene ring penetrates deep into the selectivity pocket accounting for the differentiation amongst the kinases. Interestingly, the gatekeeper Met146 sulfide interacts with the naphthalene ring in a sulfur-π stacking interaction. Compound 38 ameliorates neurotoxicity induced by amyloid-ß in human cortical neurons. Lastly, we demonstrate how to install propitious in vitro CNS-like properties into these selective inhibitors.


Subject(s)
Aminopyridines/chemistry , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/chemistry , Protein Kinase Inhibitors/chemistry , Triazines/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/therapeutic use , Animals , Binding Sites , Central Nervous System/metabolism , Computer Simulation , Humans , Mice , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Structure-Activity Relationship , Triazines/pharmacokinetics , Triazines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...