Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci ; 12: 1615-28, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17127408

ABSTRACT

Increased blood-brain-barrier (BBB) permeability precedes any clinical or pathologic signs and is critical in the pathogenesis of multiple sclerosis (MS) and brain metastases. CD4+ TH1 cells mediate demyelination in MS, but how they get sensitized and enter the brain to induce brain inflammation remains obscure. TH2 cytokines associated with allergic disorders have recently been implicated in MS, while genes upregulated in MS plaques include the mast cell-specific tryptase, the IgE receptor (Fc-epsilon-RI) and the histamine-1 receptor. Mast cell specific tryptase is elevated in the CSF of MS patients, induces microvascular leakage and stimulates protease-activated receptors (PAR), leading to widespread inflammation. BBB permeability, MS and brain metastases appear to worsen in response to acute stress that leads to the local release of corticotropin-releasing hormone (CRH), which activates brain mast cells to selectively release IL-6, IL-8 and vascular endothelial growth factor (VEGF). Acute stress increases BBB permeability that is dependent on CRH and mast cells. Acute stress shortens the time of onset of experimental alleric encephalomyelitis (EAE) that does not develop in W/W mast cell deficient or CRH -/- mice. Brain mast cell inhibition and CRHR antagonists offer novel therapeutic possibilities.


Subject(s)
Blood-Brain Barrier/metabolism , Corticotropin-Releasing Hormone/physiology , Mast Cells/immunology , Animals , Blood-Brain Barrier/ultrastructure , Cell Membrane Permeability , Humans , Inflammation/etiology , Mice , Stress, Physiological/complications
3.
Brain Res Brain Res Rev ; 49(1): 65-76, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15960987

ABSTRACT

Mast cells are critical players in allergic reactions, but they have also been shown to be important in immunity and recently also in inflammatory diseases, especially asthma. Migraines are episodic, typically unilateral, throbbing headaches that occur more frequently in patients with allergy and asthma implying involvement of meningeal and/or brain mast cells. These mast cells are located perivascularly, in close association with neurons especially in the dura, where they can be activated following trigeminal nerve, as well as cervical or sphenopalatine ganglion stimulation. Neuropeptides such as calcitonin gene-related peptide (CGRP), hemokinin A, neurotensin (NT), pituitary adenylate cyclase activating peptide (PACAP), and substance P (SP) activate mast cells leading to secretion of vasoactive, pro-inflammatory, and neurosensitizing mediators, thereby contributing to migraine pathogenesis. Brain mast cells can also secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF), selectively in response to corticotropin-releasing hormone (CRH), a mediator of stress which is known to precipitate or exacerbate migraines. A better understanding of brain mast cell activation in migraines would be useful and could lead to several points of prophylactic intervention.


Subject(s)
Mast Cells/physiology , Migraine Disorders/immunology , Migraine Disorders/physiopathology , Neuroimmunomodulation/physiology , Animals , Humans , Migraine Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...