Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611500

ABSTRACT

During the ripening process of grapes, the grapevine leaves are the most active green organs that are important for photosynthesis, which is closely linked to the development and metabolism of the plant. The detection of plant pigments and phenolic compounds in grapevine leaves can be a good indicator of the ageing process, vine vigor and the plant's ability to respond to fungal attack. In a one-year study, the development of leaf chlorophylls, carotenoids and phenolic compounds during the ripening of six indigenous Croatian grape cultivars and the international cultivars Merlot and Chardonnay was investigated. The chlorophyll a/b ratio and total chlorophyll and total carotenoid concentrations were also investigated. PCA was used to highlight relevant information from the data with the aim of distinguishing individual compounds based on the cultivar and phenological stage. The leaf total hydroxycinnamic acid and flavan-3-ol concentrations decreased slowly during grape development, with the highest concentration immediately after flowering and the lowest during grape ripening. The concentrations of ß-carotene, lutein and xanthophylls tended to decrease during bunch closure or veraison, while the concentration of chlorophylls a and b peaked during veraison and then decreased during grape ripening. This research will provide an opportunity to select cultivars with the physiological adaptation to synthesize secondary metabolites that are important for managing stress conditions.

2.
Front Plant Sci ; 13: 942148, 2022.
Article in English | MEDLINE | ID: mdl-36340348

ABSTRACT

Grape volatile organic compounds (VOCs) play an important role in the winemaking industry due to their contribution to wine sensory characteristics. Another important role in the winemaking industry have the grapevine varieties used in specific regions or countries for wine production. Due to the high variability of grapevine germplasm, grapevine varieties are as classified based on their genetic and geographical origin into genetic-geographic groups (GEN-GEO). The aim of this research was to investigate VOCs in 50 red grapevine varieties belonging to different GEN-GEO groups. The study included varieties from groups C2 (Italy and France), C7 (Croatia), and C8 (Spain and Portugal). The analysis of VOCs was performed by SPME-Arrow-GC/MS directly from grape skins. The analyzed VOCs included aldehydes, ketones, acids, alcohols, monoterpenes, and sesquiterpenes. The most abundant VOCs were aldehydes and alcohols, while the most numerous were sesquiterpenes. The most abundant compounds, aldehydes and alcohols, were found to be (E)-2-hexenal, hexenal, (E)-2-hexen-1-ol, and 1-hexanol. Using discriminant analysis, the GEN-GEO groups were separated based on their volatile profile. Some of the individual compounds contributing to the discrimination were found in relatively small amounts, such as benzoic acid, (E,E)-2,4-hexadienal, 4-pentenal, and nonanoic acid. The groups were also discriminated by their overall volatile profile: group C2 was characterized by a higher content of aldehydes and alcohols, and group C8 was characterized by a higher content of sesquiterpenes and acids. Group C7 was characterized by all low amount of all classes of VOCs.

3.
Plants (Basel) ; 10(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808401

ABSTRACT

In the era of sustainable grapevine production, there is a growing demand to define differences between Vitis vinifera varieties in susceptibility to downy mildew. Croatia, as a country with a long tradition of grapevine cultivation, preserves a large number of native grapevine varieties. A leaf disc bioassay has been conducted on 25 of them to define their response to downy mildew, according to the International Organisation of Vine and Wine (OIV) descriptor 452-1, together with the stress response of the leaf discs using chlorophyll fluorescence and multispectral imaging with 11 parameters included. Time points of measurement were as follows: before treatment (T0), one day post-inoculation (dpi) (T1), two dpi (T2), three dpi (T3), four dpi (T4), six dpi (T5), and eight dpi (T6). Visible changes in form of developed Plasmopara viticola (P. viticola) sporulation were evaluated on the seventh day upon inoculation. Results show that methods applied here distinguish varieties of different responses to downy mildew. Based on the results obtained, a phenotyping model in the absence of the pathogen is proposed, which is required to confirm by conducting more extensive research.

4.
Molecules ; 25(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260583

ABSTRACT

Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.


Subject(s)
Antioxidants/analysis , Polyphenols/analysis , Vitis/chemistry , Wine/analysis , Humans
5.
Cryo Letters ; 35(1): 40-7, 2014.
Article in English | MEDLINE | ID: mdl-24872156

ABSTRACT

BACKGROUND: Selecting experimental material at the optimal physiological stage is of paramount importance for successful cryopreservation. OBJECTIVE: The study was to investigate the effect of the physiological state of grapevine buds on their regrowth after liquid nitrogen exposure. METHODS: In a first set of experiments, we tested the regrowth of cryopreserved buds sampled from microcuttings cultured on shooting medium containing benzylaminopurine or zeatin riboside for various durations. In a second set of experiments, we studied the regrowth after liquid nitrogen exposure of buds sampled from different positions on the stem of in vitro plantlets. RESULTS: Regrowth of cryopreserved buds sampled from microcuttings was higher (30%), compared to buds sampled directly from in vitro plantlets (23%), for all culture durations of microcuttings on shooting medium tested (2-6 weeks). Addition of cytokinin in the shooting medium improved regrowth of cryopreserved buds compared to buds sampled from microcuttings cultured on medium devoid of growth regulators; however similar results were obtained with the two cytokinins tested. Buds sampled on nodes 3-4 and 6-7 (from the top of the stem) displayed higher regrowth compared to shoot tips. No significant differences were noted in regrowth after cryopreservation between buds sampled from microcuttings produced from the terminal node, or nodes 3-4 and 6-7. CONCLUSION: The physiological state of the plant material is important for cryopreservation success. Actively growing buds sampled from microcuttings displayed higher regrowth compared to buds sampled directly on in vitro plantlets.


Subject(s)
Cryopreservation , Cryoprotective Agents/pharmacology , Flowering Tops/physiology , Plant Growth Regulators/pharmacology , Plant Shoots/physiology , Vitis/physiology , Adaptation, Physiological , Benzyl Compounds/pharmacology , Cytokinins/pharmacology , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Flowering Tops/anatomy & histology , Flowering Tops/drug effects , Glycerol/pharmacology , Isopentenyladenosine/analogs & derivatives , Isopentenyladenosine/pharmacology , Nitrogen , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Purines/pharmacology , Sucrose/pharmacology , Vitis/anatomy & histology , Vitis/drug effects
6.
Naturwissenschaften ; 98(9): 763-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21833713

ABSTRACT

Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.


Subject(s)
Genome, Plant , Microsatellite Repeats/genetics , Vitis/genetics , Genotyping Techniques , Species Specificity , Vitis/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...