Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38659858

ABSTRACT

Natural Killer (NK) cells can recognize and kill Mtb-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (IGRA- contacts) with a progressive loss of these circulating cells during household-associated latent infection and disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.

2.
bioRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37790504

ABSTRACT

Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets. We identified immature precursors to the Adaptive NK cells that are equally present in both CMV+ and CMV-individuals, resolved an Adaptive transcriptional state distinct from most mature NK cells and sharing a common gene program with the immature CD56 bright population, and demonstrated retention of proliferative capacity and acquisition of superior IFNγ production in the Adaptive population. Furthermore, we distinguish the CD56 bright and Adaptive NK populations by expression of the transcription factor CXXC5, positioning these memory NK cells at the inflection point between innate and adaptive lymphocytes.

3.
Blood Adv ; 7(17): 5069-5081, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37327118

ABSTRACT

Although allogeneic hematopoietic cell transplant (allo-HCT) is curative for high-risk pediatric acute myeloid leukemia (AML), disease relapse remains the primary cause of posttransplant mortality. To identify pressures imposed by allo-HCT on AML cells that escape the graft-versus-leukemia effect, we evaluated immune signatures at diagnosis and posttransplant relapse in bone marrow samples from 4 pediatric patients using a multimodal single-cell proteogenomic approach. Downregulation of major histocompatibility complex class II expression was most profound in progenitor-like blasts and accompanied by correlative changes in transcriptional regulation. Dysfunction of activated natural killer cells and CD8+ T-cell subsets at relapse was evidenced by the loss of response to interferon gamma, tumor necrosis factor α signaling via NF-κB, and interleukin-2/STAT5 signaling. Clonotype analysis of posttransplant relapse samples revealed an expansion of dysfunctional T cells and enrichment of T-regulatory and T-helper cells. Using novel computational methods, our results illustrate a diverse immune-related transcriptional signature in posttransplant relapses not previously reported in pediatric AML.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Child , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Homologous , Histocompatibility Antigens Class II , Recurrence
4.
Blood Adv ; 7(19): 5784-5798, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37196646

ABSTRACT

Cytomegalovirus (CMV) infection is associated with the expansion of a mature NKG2C+FcεR1γ- natural killer (NK) cell population. The exact mechanism underlying the emergence of NKG2C+ NK cells, however, remains unknown. Allogeneic hematopoietic cell transplantation (HCT) provides an opportunity to longitudinally study lymphocyte recovery in the setting of CMV reactivation, particularly in patients receiving T-cell-depleted (TCD) allografts. We analyzed peripheral blood lymphocytes from 119 patients at serial time points after infusion of their TCD allograft and compared immune recovery with that in samples obtained from recipients of T-cell-replete (T-replete) (n = 96) or double umbilical cord blood (DUCB) (n = 52) allografts. NKG2C+ NK cells were detected in 92% (45 of 49) of recipients of TCD HCT who experienced CMV reactivation. Although NKG2A+ cells were routinely identifiable early after HCT, NKG2C+ NK cells were identified only after T cells could be detected. T-cell reconstitution occurred at variable times after HCT among patients and predominantly comprised CD8+ T cells. In patients with CMV reactivation, recipients of TCD HCT expressed significantly higher frequencies of NKG2C+ and CD56neg NK cells compared with patients who received T-replete HCT or DUCB transplantation. NKG2C+ NK cells after TCD HCT were CD57+FcεR1γ+ and degranulated significantly more in response to target cells compared with the adaptive the NKG2C+CD57+FcεR1γ- NK cell population. We conclude that the presence of circulating T cells is associated with the expansion of a CMV-induced NKG2C+ NK cell population, a potentially novel example of developmental cooperation between lymphocyte populations in response to viral infection.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Humans , Cytomegalovirus , Killer Cells, Natural , Hematopoietic Stem Cell Transplantation/adverse effects , CD8-Positive T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...