Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998721

ABSTRACT

The description of various loading types within the frame of viscoelasticity, such as creep-recovery and stress relaxation in a wide time scale, by means of the same model and similar model parameters is always an interesting topic. In the present work, a viscoelastic model that was analyzed in previous works has been utilized to describe the main standard loading types of viscoelasticity with the same set of model parameters. The relaxation function of this model includes a distribution function followed by the energy barriers that need to be overcome by the molecular domains when a stress field is applied. This distribution function attains a decisive role in the analysis and it was shown that it can be determined on the basis of the loss modulus master curve experimental results. Thereafter, requiring no additional parameters, the creep compliance, the relaxation modulus of poly-lactic acid (PLA) in a wide time scale, as well as creep-recovery at various stresses could be predicted. It was also found that by employing the distribution function associated with the PLA matrix, the creep-recovery experimental data of PLA/hybrid nanocomposites could subsequently be predicted. Therefore, the proposed analysis was shown to be a useful method to predict the material's viscoelastic response.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36985989

ABSTRACT

In the present work, SiO2micro/nanocomposites based on poly-lactic acid (PLA) and an epoxy resin were prepared and experimentally studied. The silica particles were of varying sizes from the nano to micro scale at the same loading. The mechanical and thermomechanical performance, in terms of dynamic mechanical analysis, of the composites prepared was studied in combination with scanning electron microscopy (SEM). Finite element analysis (FEA) has been performed to analyze the Young's modulus of the composites. A comparison with the results of a well-known analytical model, taking into account the filler's size and the presence of interphase, was also performed. The general trend is that the reinforcement is higher for the nanosized particles, but it is important to conduct supplementary studies on the combined effect of the matrix type, the size of the nanoparticles, and the dispersion quality. A significant mechanical enhancement was obtained, particularly in the Resin/based nanocomposites.

3.
Soft Matter ; 15(8): 1813-1824, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30688327

ABSTRACT

Two series of polymer nanocomposites (PNCs) based on amorphous styrene-butadiene rubber (SBR) and semicrystalline linear low-density polyethylene (PE) matrices were filled with 2-15 wt% carbon nanotubes (CNT) and were studied by employing calorimetry, dielectric spectroscopy and laser flash analysis. The electrical conductivity, σ, increased with CNT loading and similar values were exhibited for the two matrices, uniquely depending on the concentration of the CNTs, suggesting practically no effects of the crystalline fraction (CF) on σ. For both types of matrix, a fraction of the polymer was found to be immobilized (rigid amorphous fraction, RAF). For the amorphous SBR, the RAF in PNCs originates uniquely from the presence of the filler (RAFfiller up to 0.19 wt). On the other hand, for the semicrystalline PE, the RAF is significantly larger (0.4-0.6 wt) due to the severe contribution of the RAF around the crystals (RAFcrystal). The thermal diffusivity, α, is quite low in both types of PNCs and exhibits higher values in the semicrystalline matrix (PE-based PNCs). Our results suggest that in these PNCs, heat transport mechanisms are activated mainly in the crystalline domains, more so with the additive contribution of the RAFcrystal. In the amorphous SBR-based PNCs, heat transport is facilitated mainly by CNTs, whereas the RAFfiller is found to be a good measure of the thermal resistance behavior of CNT/polymer interphases and consequently, of thermal diffusivity. Direct correlation of the results obtained by the three techniques with each other revealed the systematic dependence of α on the amount of RAF in each matrix; the α(RAF) trends, however, are different for the two matrices. Furthermore, the results suggest that the two RAFs exhibit different structural characteristics, e.g. the RAFcrystal exhibits a more ordered structure than the RAFfiller; this issue is still an open debate in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...