Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 191: 110999, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32289650

ABSTRACT

In this research a whispering gallery mode (WGM) resonator based on vertically oriented ZnO nanorods, which were formed on silicon surface (silicon/ZnO-NRs), has been applied in the design of optical immunosensor that was dedicated for the determination of grapevine virus A-type (GVA) proteins. Vertically oriented ZnO-NRs were grown on silicon substrates by atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and the silicon/ZnO-NRs structures formed were characterized by structural and optical methods. Optical characterization demonstrates that silicon/ZnO-NRs-based structures can act as 'whispering gallery mode' (WGM) resonator where quasi-whispering gallery modes (quasi-WGMs) are generated. These quasi-WGMs were experimentally observed in the visible and infrared ranges of the photoluminescence spectra. In order to design an immuno-sensing system the anti-GVA antibodies were immobilized on the surface of silicon/ZnO-NRs and in this way silicon/ZnO-NRs/anti-GVA structure was formed. The immobilization of anti-GVA antibodies and then the interaction of silicon/ZnO-NRs/anti-GVA structure with GVA proteins (GVA-antigens) resulted in an opposite shifts of the WGMs peaks in the visible range of the photoluminescence spectra observed as a defect-related photoluminescence emission of ZnO-NRs. Here designed silicon/ZnO-NRs/anti-GVA immuno-sensing structure demonstrates the sensitivity towards GVA-antigens in the concentration range of 1-200 ng/ml. Bioanalytical applicability of the silicon/ZnO-NRs-based structures in the WGMs registration mode is discussed.


Subject(s)
Biosensing Techniques , Flexiviridae/isolation & purification , Nanotubes/chemistry , Zinc Oxide/chemistry , Optics and Photonics , Particle Size , Silicon/chemistry , Surface Properties
2.
Biosens Bioelectron ; 92: 763-769, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28034507

ABSTRACT

Novel sensitive optical biosensor for determination of Grapevine virus A-type (GVA) proteins (GVA-antigens) has been designed. This biosensor was based on thin films of Zinc Oxide (ZnO) deposited by atomic layer deposition (ALD). The ZnO-based films have demonstrated favorable surface-structural properties for the direct immobilization of antibodies against GVA-antigens in order to form a biosensitive layer sensitive to GVA-antigens. The immobilization was confirmed by intensity changes in the main near band emission (NBE) peak of ZnO and by the formation of intense photoluminescence band, discovered in the visible range around 425nm, caused by the immobilized proteins. The GVA-antigen detection was performed by the evaluation of changes and behavior of a corresponding luminescence band. The sensitivity of as-formed label-free biosensor towards the GVA-antigens was determined in the range from 1pg/ml to 10ng/ml; in addition, the selectivity of biosensor was evaluated.


Subject(s)
Antibodies, Immobilized/chemistry , Antigens, Viral/analysis , Luminescent Measurements/methods , Plant Viruses/isolation & purification , Viral Proteins/analysis , Vitis/virology , Zinc Oxide/chemistry , Biosensing Techniques/methods , Limit of Detection , Luminescence , Plant Diseases/virology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...