Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Int ; 185: 108522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401434

ABSTRACT

The rapidly increasing prevalence of obesity and overweight, especially in children and adolescents, has become a serious societal issue. Although various genetic and environmental risk factors for pediatric obesity and overweight have been identified, the problem has not been solved. In this study, we examined whether environmental nanoplastic (NP) pollutants can act as environmental obesogens using mouse models exposed to NPs derived from polystyrene and polypropylene, which are abundant in the environment. We found abnormal weight gain in the progeny until 6 weeks of age following the oral administration of NPs to the mother during gestation and lactation. Through a series of experiments involving multi-omic analyses, we have demonstrated that NP-induced weight gain is caused by alterations in the lipid composition (lysophosphatidylcholine/phosphatidylcholine ratio) of maternal breast milk and he gut microbiota distribution of the progeny. These data indicate that environmental NPs can act as obesogens in childhood.


Subject(s)
Microbiota , Pediatric Obesity , Male , Child , Female , Animals , Mice , Humans , Adolescent , Overweight/epidemiology , Microplastics , Weight Gain , Milk, Human , Mothers , Lipids , Eating
2.
J Hazard Mater ; 426: 127815, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34823950

ABSTRACT

As global plastic production continues to grow, microplastics released from a massive quantity of plastic wastes have become a critical environmental concern. These microplastic particles are found in a wide range of living organisms in a diverse array of ecosystems. In this study, we investigated the biological effects of polystyrene nanoplastic (PSNP) on development of the central nervous system using cultured neural stem cells (NSCs) and mice exposed to PSNP during developmental stages. Our study demonstrates that maternal administration of PSNP during gestation and lactating periods altered the functioning of NSCs, neural cell compositions, and brain histology in progeny. Similarly, PSNP-induced molecular and functional defects were also observed in cultured NSCs in vitro. Finally, we show that the abnormal brain development caused by exposure to high concentrations of PSNP results in neurophysiological and cognitive deficits in a gender-specific manner. Our data demonstrate the possibility that exposure to high amounts of PSNP may increase the risk of neurodevelopmental defects.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Brain , Ecosystem , Female , Humans , Lactation , Maternal Exposure/statistics & numerical data , Mice , Plastics/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/analysis
3.
Exp Neurobiol ; 30(4): 263-274, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34483141

ABSTRACT

Intellectual disability (ID) is a neurodevelopmental disorder defined by below-average intelligence (intelligence quotient of <70) accompanied by adaptive behavior deficits. Defects in the functions of neural stem cells during brain development are closely linked to the pathogenesis of ID. To understand the molecular etiology of ID, we examined neural stem cells from individuals with Duchenne muscular dystrophy (DMD), a genetic disorder in which approximately one-third of the patients exhibit ID. In this study, we generated induced pluripotent stem cells from peripheral blood mononuclear cells from a normal individual and DMD patients with and without ID to identify ID-specific functional and molecular abnormalities. We found defects in neural ectoderm formation in the group of DMD patients with ID. Our transcriptome analysis of patient-derived neural stem cells revealed altered expression of genes related to the hippo signaling pathway and neuroactive ligand-receptor interaction, implicating these in the pathogenesis of ID in patients with DMD.

SELECTION OF CITATIONS
SEARCH DETAIL
...