Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 750, 2019.
Article in English | MEDLINE | ID: mdl-31231414

ABSTRACT

Since the original discovery of a Universal Stress Protein (USP) in Escherichia coli, a number of USPs have been identified from diverse sources including archaea, bacteria, plants, and metazoans. As their name implies, these proteins participate in a broad range of cellular responses to biotic and abiotic stresses. Their physiological functions are associated with ion scavenging, hypoxia responses, cellular mobility, and regulation of cell growth and development. Consistent with their roles in resistance to multiple stresses, USPs show a wide range of structural diversity that results from the diverse range of other functional motifs fused with the USP domain. As well as providing structural diversity, these catalytic motifs are responsible for the diverse biochemical properties of USPs and enable them to act in a number of cellular signaling transducers and metabolic regulators. Despite the importance of USP function in many organisms, the molecular mechanisms by which USPs protect cells and provide stress resistance remain largely unknown. This review addresses the diverse roles of USPs in plants and how the proteins enable plants to resist against multiple stresses in ever-changing environment. Bioinformatic tools used for the collection of a set of USPs from various plant species provide more than 2,100 USPs and their functional diversity in plant physiology. Data from previous studies are used to understand how the biochemical activity of plant USPs modulates biotic and abiotic stress signaling. As USPs interact with the redox protein, thioredoxin, in Arabidopsis and reactive oxygen species (ROS) regulates the activity of USPs, the involvement of USPs in redox-mediated defense signaling is also considered. Finally, this review discusses the biotechnological application of USPs in an agricultural context by considering the development of novel stress-resistant crops through manipulating the expression of USP genes.

2.
Int J Mol Sci ; 18(12)2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29186920

ABSTRACT

The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the Arabidopsis universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP OE) and T-DNA insertion knock-out (atusp, SALK_146059) mutant lines were used. The results indicated that AtUSP OE enhanced plant tolerance to cold stress, whereas atusp did not. AtUSP is localized in the nucleus and cytoplasm, and cold stress significantly affects RNA metabolism such as by misfolding and secondary structure changes of RNA. Therefore, we investigated the relationship of AtUSP with RNA metabolism. We found that AtUSP can bind nucleic acids, including single- and double-stranded DNA and luciferase mRNA. AtUSP also displayed strong nucleic acid-melting activity. We expressed AtUSP in RL211 Escherichia coli, which contains a hairpin-loop RNA structure upstream of chloramphenicol acetyltransferase (CAT), and observed that AtUSP exhibited anti-termination activity that enabled CAT gene expression. AtUSP expression in the cold-sensitive Escherichia coli (E. coli) mutant BX04 complemented the cold sensitivity of the mutant cells. As these properties are typical characteristics of RNA chaperones, we conclude that AtUSP functions as a RNA chaperone under cold-shock conditions. Thus, the enhanced tolerance of AtUSP OE lines to cold stress is mediated by the RNA chaperone function of AtUSP.


Subject(s)
Acclimatization , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , RNA Processing, Post-Transcriptional/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cold Temperature , Protein Binding , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...