Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15927, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741927

ABSTRACT

We synthesized a CaZrO3/SrTiO3 oxide heterostructure, which can serve as an alternative to LaAlO3/SrTiO3, and confirmed the generation of 2-dimensional electron gas (2-DEG) at the heterointerface. We analyzed the electrical-transport properties of the 2-DEG to elucidate its intrinsic characteristics. Based on the magnetic field dependence of resistance at 2 K, which exhibited Weak Anti-localization (WAL) behaviors, the fitted Rashba parameter values were found to be about 12-15 × 10-12 eV*m. These values are stronger than the previous reported Rashba parameters obtained from the 2-DEGs in other heterostructure systems and several layered 2D materials. The observed strong spin-orbit coupling (SOC) is attributed to the strong internal electric field generated by the lattice mismatch between the CaZrO3 layer and SrTiO3 substrate. This pioneering strong SOC of the 2-DEG at the CaZrO3/SrTiO3 heterointerface may play a pivotal role in the developing future metal oxide-based quantum nanoelectronics devices.

2.
Nat Commun ; 13(1): 5130, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050294

ABSTRACT

Phase transition points can be used to critically reduce the ionic migration activation energy, which is important for realizing high-performance electrolytes at low temperatures. Here, we demonstrate a route toward low-temperature thermionic conduction in solids, by exploiting the critically lowered activation energy associated with oxygen transport in Ca-substituted bismuth ferrite (Bi1-xCaxFeO3-δ) films. Our demonstration relies on the finding that a compositional phase transition occurs by varying Ca doping ratio across xCa ≃ 0.45 between two structural phases with oxygen-vacancy channel ordering along <100> or <110> crystal axis, respectively. Regardless of the atomic-scale irregularity in defect distribution at the doping ratio, the activation energy is largely suppressed to 0.43 eV, compared with ~0.9 eV measured in otherwise rigid phases. From first-principles calculations, we propose that the effective short-range attraction between two positively charged oxygen vacancies sharing lattice deformation not only forms the defect orders but also suppresses the activation energy through concerted hopping.

3.
Adv Mater ; 34(42): e2205825, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36069028

ABSTRACT

Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3 is reported, which boosts the square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, it is experimentally demonstrated that three electrically controlled polar-ordering states lead to switchable and nonvolatile dielectric states for application of nondestructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates.

4.
Nano Lett ; 22(3): 1059-1066, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35084865

ABSTRACT

The orbital degree of freedom, strongly coupled with the lattice and spin, is an important factor when designing correlated functions. Whether the long-range orbital order is stable at reduced dimensions and, if not, what the critical thickness is remains a tantalizing question. Here, we report the melting of orbital ordering, observed by controlling the dimensionality of the canonical eg1 orbital system LaMnO3. Epitaxial films are synthesized with vertically aligned orbital ordering planes on an orthorhombic substrate, so that reducing film thickness changes the two-dimensional planes into quasi-one-dimensional nanostrips. The orbital order appears to be suppressed below the critical thickness of about six unit cells by changing the characteristic phonon modes and making the Mn d orbital more isotropic. Density functional calculations reveal that the electronic energy instability induced by bandwidth narrowing via the dimensional crossover and the interfacial effect causes the absence of orbital order in the ultrathin thickness.

5.
Nano Lett ; 21(20): 8554-8562, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34623164

ABSTRACT

As a 3D topological insulator, bismuth selenide (Bi2Se3) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. Understanding the coupling with its topological phase requires studying the interactions of carriers with the lattice on time scales down to the subpicosecond regime. Here, we investigate the ultrafast carrier-induced lattice contractions and interlayer modulations in Bi2Se3 thin films by time-resolved diffraction using an X-ray free-electron laser. The lattice contraction depends on the carrier concentration and is followed by an interlayer expansion accompanied by oscillations. Using density functional theory and the Lifshitz model, the initial contraction can be explained by van der Waals force modulation of the confined free carrier layers. Our theoretical calculations suggest that the band inversion, related to a topological phase transition, is modulated by the expansion of the interlayer distance. These results provide insights into the topological phase control by light-induced structural change on ultrafast time scales.

6.
Sci Adv ; 6(41)2020 Oct.
Article in English | MEDLINE | ID: mdl-33036971

ABSTRACT

Mobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm2 C-1, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching. By tracking the color propagation, oxygen vacancy mobility can be estimated to be 10-8 cm2 s-1 V-1 near 300°C, which is a giant value attained due to the mosaic pseudomonoclinic film stabilized on LaAlO3 substrate. First-principles calculations reveal that the defect density modulation associated with hole charge injection causes a prominent change in electron correlation, resulting in the light absorption modulation. Our findings will pave the pathway for practical topotactic electrochromic applications.

7.
Rev Sci Instrum ; 91(8): 083904, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872965

ABSTRACT

Resonant elastic x-ray scattering has been widely employed for exploring complex electronic ordering phenomena, such as charge, spin, and orbital order, in particular, in strongly correlated electronic systems. In addition, recent developments in pump-probe x-ray scattering allow us to expand the investigation of the temporal dynamics of such orders. Here, we introduce a new time-resolved Resonant Soft X-ray Scattering (tr-RSXS) endstation developed at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This endstation has an optical laser (wavelength of 800 nm plus harmonics) as the pump source. Based on the commissioning results, the tr-RSXS at PAL-XFEL can deliver a soft x-ray probe (400 eV-1300 eV) with a time resolution of ∼100 fs without jitter correction. As an example, the temporal dynamics of a charge density wave on a high-temperature cuprate superconductor is demonstrated.

8.
Sci Rep ; 9(1): 20145, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882979

ABSTRACT

Over the last few decades, manipulating the metal-insulator (MI) transition in perovskite oxides (ABO3) via an external control parameter has been attempted for practical purposes, but with limited success. The substitution of A-site cations is the most widely used technique to tune the MI transition. However, this method introduces unintended disorder, blurring the intrinsic properties. The present study reports the modulation of MI transitions in [10 nm-NdNiO3/t-LaNiO3/10 nm-NdNiO3/SrTiO3 (100)] trilayers (t = 5, 7, 10, and 20 nm) via the control of the LaNiO3 thickness. Upon an increase in the thickness of the LaNiO3 layer, the MI transition temperature undergoes a systematic decrease, demonstrating that bond disproportionation, the MI, and antiferromagnetic transitions are modulated by the LaNiO3 thickness. Because the bandwidth and the MI transition are determined by the Ni-O-Ni bond angle, this unexpected behavior suggests the transfer of the bond angle from the lower layer into the upper. The bond-angle transfer eventually induces a structural change of the orthorhombic structure of the middle LaNiO3 layer to match the structure of the bottom and the top NdNiO3, as evidenced by transmission electron microscopy. This engineering layer sequence opens a novel pathway to the manipulation of the key properties of oxide nickelates, such as the bond disproportionation, the MI transition, and unconventional antiferromagnetism with no impact of disorder.

9.
J Synchrotron Radiat ; 26(Pt 4): 1101-1109, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274433

ABSTRACT

A wake monochromator based on a large-area diamond single crystal for hard X-ray self-seeding has been successfully installed and commissioned in the hard X-ray free-electron laser (FEL) at the Pohang Accelerator Laboratory with international collaboration. For this commissioning, the self-seeding was demonstrated with a low bunch charge (40 pC) and the nominal bunch charge (180 pC) of self-amplified spontaneous emission (SASE) operation. The FEL pulse lengths were estimated as 7 fs and 29.5 fs, respectively. In both cases, the average spectral brightness increased by more than three times compared with the SASE mode. The self-seeding experiment was demonstrated for the first time using a crystal with a thickness of 30 µm, and a narrow bandwidth of 0.22 eV (full width at half-maximum) was obtained at 8.3 keV, which confirmed the functionality of a crystal with such a small thickness. In the nominal bunch-charge self-seeding experiment, the histogram of the intensity integrated over a 1 eV bandwidth showed a well defined Gaussian profile, which is evidence of the saturated FEL and a minimal electron-energy jitter (∼1.2 × 10-4) effect. The corresponding low photon-energy jitter (∼2.4 × 10-4) of the SASE FEL pulse, which is two times lower than the Pierce parameter, enabled the seeding power to be maximized by maintaining the spectral overlap between SASE FEL gain and the monochromator.

10.
Rev Sci Instrum ; 89(5): 055105, 2018 May.
Article in English | MEDLINE | ID: mdl-29864848

ABSTRACT

We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 µJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

11.
Nat Commun ; 9(1): 403, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374260

ABSTRACT

Topological defects in matter behave collectively to form highly non-trivial structures called topological textures that are characterised by conserved quantities such as the winding number. Here we show that an epitaxial ferroelectric square nanoplate of bismuth ferrite subjected to a large strain gradient (as much as 105 m-1) associated with misfit strain relaxation enables five discrete levels for the ferroelectric topological invariant of the entire system because of its peculiar radial quadrant domain texture and its inherent domain wall chirality. The total winding number of the topological texture can be configured from - 1 to 3 by selective non-local electric switching of the quadrant domains. By using angle-resolved piezoresponse force microscopy in conjunction with local winding number analysis, we directly identify the existence of vortices and anti-vortices, observe pair creation and annihilation and manipulate the net number of vortices. Our findings offer a useful concept for multi-level topological defect memory.

12.
Nat Nanotechnol ; 10(11): 972-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26322941

ABSTRACT

The phase separation of multiple competing structural/ferroelectric phases has attracted particular attention owing to its excellent electromechanical properties. Little is known, however, about the strain-gradient-induced electronic phenomena at the interface of competing structural phases. Here, we investigate the polymorphic phase interface of bismuth ferrites using spatially resolved photocurrent measurements, present the observation of a large enhancement of the anisotropic interfacial photocurrent by two orders of magnitude, and discuss the possible mechanism on the basis of the flexoelectric effect. Nanoscale characterizations of the photosensitive area through position-sensitive angle-resolved piezoresponse force microscopy and electron holography techniques, in conjunction with phase field simulation, reveal that regularly ordered dipole-charged domain walls emerge. These findings offer practical implications for complex oxide optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...