Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
2.
CNS Neurosci Ther ; 30(4): e14509, 2024 04.
Article in English | MEDLINE | ID: mdl-37904343

ABSTRACT

AIMS: Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS: To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS: Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION: Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Survivin/pharmacology , Survivin/therapeutic use , Hippocampus , Neurogenesis/physiology , Cognition , Disease Models, Animal , Mice, Transgenic
3.
Exp Mol Med ; 55(2): 377-384, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36720917

ABSTRACT

Various CRISPR‒Cas9 orthologs are used in genome engineering. One of the smallest Cas9 orthologs is cjCas9 derived from Campylobacter jejuni, which is a highly specific genome editing tool. Here, we developed cjCas9-based base editors including a cytosine base editor (cjCBEmax) and an adenine base editor (cjABE8e) that can successfully induce endogenous base substitutions by up to 91.2% at the HPD gene in HEK293T cells. Analysis of the base editing efficiency of 13 endogenous target sites showed that the active windows of cjCBEmax and cjABE8e are wider than those of spCas9-based base editors and that their specificities are slightly lower than that of cjCas9. Importantly, engineered cjCas9 and gRNA scaffolds can improve the base editing efficiency of cjABE8e by up to 6.4-fold at the HIF1A gene in HEK293T cells. Due to its small size, cjABE8e can be packaged in a single adeno-associated virus vector with two tandem arrays of gRNAs, and the delivery of the resulting AAV could introduce base substitutions at endogenous ANGPT2 and HPD target sites. Overall, our findings have expanded the potential of the use of base editors for in vivo or ex vivo therapeutic approaches.


Subject(s)
Campylobacter jejuni , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems
4.
Mol Ther Nucleic Acids ; 30: 131-142, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36250202

ABSTRACT

RNA-guided CRISPR-Cas12a endonucleases are promising tools for genome engineering. Here we demonstrate that LbCas12a variants derived from Lachnospiraceae bacterium show a broad PAM preference, recognizing certain non-canonical PAMs with high efficiency. Furthermore, we engineered LbABE8e to carry G532R and/or K595R mutations, altering its original PAM specificities; these variants exhibited superior base editing activity in human cells compared with wild-type LbABE8e at sites with non-canonical PAMs. Based on this finding, we utilized the most effective LbCas12a and LbABE8e variants to demonstrate multiplexed and mutant-allele-specific gene editing in oncogenes, made possible by the variant's recognition of non-canonical PAMs. Importantly, LbCas12a-G532R/K595R and LbABE8e-G532R/K595R with optimized crRNA arrays targeted to triple oncogenic mutations inhibited colon cancer cell proliferation. Taken together, these results demonstrate the potential of engineered LbCas12a and LbABE8e as tools for targeting sites with alternative PAMs for genome engineering and therapeutic editing in cancer cells.

5.
Nat Biotechnol ; 40(1): 94-102, 2022 01.
Article in English | MEDLINE | ID: mdl-34475560

ABSTRACT

Gene therapy would benefit from a miniature CRISPR system that fits into the small adeno-associated virus (AAV) genome and has high cleavage activity and specificity in eukaryotic cells. One of the most compact CRISPR-associated nucleases yet discovered is the archaeal Un1Cas12f1. However, Un1Cas12f1 and its variants have very low activity in eukaryotic cells. In the present study, we redesigned the natural guide RNA of Un1Cas12f1 at five sites: the 5' terminus of the trans-activating CRISPR RNA (tracrRNA), the tracrRNA-crRNA complementary region, a penta(uridinylate) sequence, the 3' terminus of the crRNA and a disordered stem 2 region in the tracrRNA. These optimizations synergistically increased the average indel frequency by 867-fold. The optimized Un1Cas12f1 system enabled efficient, specific genome editing in human cells when delivered by plasmid vectors, PCR amplicons and AAV. As Un1Cas12f1 cleaves outside the protospacer, it can be used to create large deletions efficiently. The engineered Un1Cas12f1 system showed efficiency comparable to that of SpCas9 and specificity similar to that of AsCas12a.


Subject(s)
Dependovirus , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Endonucleases/genetics , Gene Editing , Humans , RNA , RNA, Guide, Kinetoplastida/genetics
6.
ACS Appl Mater Interfaces ; 13(45): 54466-54475, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34739229

ABSTRACT

Understanding metal-to-insulator phase transitions in solids has been a keystone not only for discovering novel physical phenomena in condensed matter physics but also for achieving scientific breakthroughs in materials science. In this work, we demonstrate that the transport properties (i.e., resistivity and transition temperature) in the metal-to-insulator transitions of perovskite nickelates are tunable via the epitaxial heterojunctions of LaNiO3 and NdNiO3 thin films. A mismatch in the oxygen coordination environment and interfacial octahedral coupling at the oxide heterointerface allows us to realize an exotic phase that is unattainable in the parent compound. With oxygen vacancy formation for strain accommodation, the topmost LaNiO3 layer in LaNiO3/NdNiO3 bilayer thin films is structurally engineered and it electrically undergoes a metal-to-insulator transition that does not appear in metallic LaNiO3. Modification of the NdNiO3 template layer thickness provides an additional knob for tailoring the tilting angles of corner-connected NiO6 octahedra and the linked transport characteristics further. Our approaches can be harnessed to tune physical properties in complex oxides and to realize exotic physical phenomena through oxide thin-film heterostructuring.

7.
8.
Arch Pharm Res ; 44(6): 537-552, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34164771

ABSTRACT

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, and its development into a set of powerful tools for manipulating the genome, has revolutionized genome editing. Precise, targeted CRISPR/Cas-based genome editing has become the most widely used platform in organisms ranging from plants to animals. The CRISPR/Cas system has been extensively modified to increase its efficiency and fidelity. In addition, the fusion of various protein motifs to Cas effector proteins has facilitated diverse set of genetic manipulations, such as base editing, transposition, recombination, and epigenetic regulation. The CRISPR/Cas system is undergoing continuous development to overcome current limitations, including off-target effects, narrow targeting scope, and issues associated with the delivery of CRISPR components for genome engineering and therapeutic approaches. Here, we review recent progress in a diverse array of CRISPR/Cas-based tools. We also describe limitations and concerns related to the use of CRISPR/Cas technologies.


Subject(s)
CRISPR-Cas Systems/genetics , Epigenesis, Genetic/genetics , Gene Editing/methods , Protein Engineering/methods , Animals , Gene Editing/trends , Humans , Protein Engineering/trends
9.
Mol Ther ; 29(11): 3179-3191, 2021 11 03.
Article in English | MEDLINE | ID: mdl-33823301

ABSTRACT

The emerging clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing technologies have progressed remarkably in recent years, opening up the potential of precise genome editing as a therapeutic approach to treat various diseases. The CRISPR-CRISPR-associated (Cas) system is an attractive platform for the treatment of Duchenne muscular dystrophy (DMD), which is a neuromuscular disease caused by mutations in the DMD gene. CRISPR-Cas can be used to permanently repair the mutated DMD gene, leading to the expression of the encoded protein, dystrophin, in systems ranging from cells derived from DMD patients to animal models of DMD. However, the development of more efficient therapeutic approaches and delivery methods remains a great challenge for DMD. Here, we review various therapeutic strategies that use CRISPR-Cas to correct or bypass DMD mutations and discuss their therapeutic potential, as well as obstacles that lie ahead.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Animals , Clinical Studies as Topic , Disease Management , Disease Models, Animal , Dystrophin/genetics , Exons , Humans , Mutation , Treatment Outcome
10.
Mol Ther ; 28(10): 2286-2296, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32682455

ABSTRACT

CRISPR-Cas12a represents a class 2/type V CRISPR RNA-guided endonuclease, holding promise as a precise genome-editing tool in vitro and in vivo. For efficient delivery of the CRISPR-Cas system into cancer, oncolytic adenovirus (oAd) has been recognized as a promising alternative vehicle to conventional cancer therapy, owing to its cancer specificity; however, to our knowledge, it has not been used for genome editing. In this study, we show that CRISPR-Cas12a mediated by oAd disrupts the oncogenic signaling pathway with excellent cancer specificity. The intratumoral delivery of a single oAd co-expressing a Cas12a and a CRISPR RNA (crRNA) targeting the epidermal growth factor receptor (EGFR) gene (oAd/Cas12a/crEGFR) induces efficient and precise editing of the targeted EGFR gene in a cancer-specific manner, without detectable off-target nuclease activity. Importantly, oAd/Cas12a/crEGFR elicits a potent antitumor effect via robust induction of apoptosis and inhibition of tumor cell proliferation, ultimately leading to complete tumor regression in a subset of treated mice. Collectively, in this study we show precise genomic reprogramming via a single oAd vector-mediated CRISPR-Cas system and the feasibility of such system as an alternative cancer therapy.


Subject(s)
CRISPR-Cas Systems , ErbB Receptors/genetics , Gene Editing , Genetic Vectors/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , RNA, Guide, Kinetoplastida/genetics , Humans , Neoplasms/genetics , Neoplasms/therapy
11.
Mol Ther ; 27(1): 130-136, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30470629

ABSTRACT

Genome editing with CRISPR systems provides an unprecedented opportunity to modulate cellular responses in pathological conditions by inactivating undruggable targets, such as transcription factors. Previously, we demonstrated that the smallest Cas9 ortholog characterized to date, from Campylobacter jejuni (CjCas9) targeted to Hif1a and delivered in an adeno-associated virus (AAV) vector, effectively suppressed pathological choroidal neovascularization in the mouse retina. Before implementation of CjCas9 as an in vivo therapeutic modality, it is essential to investigate the long-term effects of target gene disruption via AAV-mediated delivery of CjCas9 in vivo. In this study, histologic and electroretinographic analyses demonstrated that CjCas9 targeted to Hif1a did not induce any definite toxicity in the retina, although the target gene was mutated with a frequency ranging from 45% to 79% in retinal or retinal pigment epithelial cells. Importantly, at 14 months after injection, no indels were detected at potential off-target sites identified using Digenome-seq and Cas-OFFinder, suggesting that long-term expression of CjCas9 does not aggravate off-target effects. Taken together, our results show that intravitreal injection of AAV encoding CjCas9 targeted to Hif1a effectively induced and maintained mutations in retinal tissues for more than 1 year and did not affect retinal histologic integrity or functions.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Campylobacter jejuni/enzymology , Dependovirus/genetics , Gene Editing/methods , Retina/metabolism , Animals , CRISPR-Associated Protein 9/genetics , Female , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mutation
12.
Mol Ther ; 26(6): 1529-1538, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29730196

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle-wasting disease caused by mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be used as a gene-editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, we used Cas9 derived from S. pyogenes to generate Dmd knockout mice with a frameshift mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the EGFP gene in the tibialis anterior muscle of the Dmd knockout mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced small insertions or deletions at the target site. This treatment resulted in conversion of the disrupted Dmd reading frame from out of frame to in frame, leading to the expression of dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-treated muscles, without off-target mutations, indicating high efficiency and specificity of CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9, has great potential for the treatment of DMD and other neuromuscular diseases.


Subject(s)
Campylobacter jejuni/enzymology , Dystrophin/deficiency , Dystrophin/genetics , Frameshift Mutation/genetics , Animals , CRISPR-Cas Systems/genetics , Gene Editing , Genetic Therapy , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics
13.
Nat Commun ; 9(1): 1855, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29748595

ABSTRACT

LbCpf1, derived from Lachnospiraceae bacterium ND2006, is a CRISPR RNA-guided endonuclease and holds promise for therapeutic applications. Here we show that LbCpf1 can be used for therapeutic gene editing in a mouse model of age-related macular degeneration (AMD). The intravitreal delivery of LbCpf1, targeted to two angiogenesis-associated genes encoding vascular endothelial growth factor A (Vegfa) and hypoxia inducing factor 1a (Hif1a), using adeno-associated virus, led to efficient gene disruption with no apparent off-target effects in the retina and retinal pigment epithelium (RPE) cells. Importantly, LbCpf1 targeted to Vegfa or Hif1a in RPE cells reduced the area of laser-induced choroidal neovascularization as efficiently as aflibercept, an anti-VEGF drug currently used in the clinic, without inducing cone dysfunction. Unlike aflibercept, LbCpf1 targeted to Vegfa or Hif1a achieved a long-term therapeutic effect on CNV, potentially avoiding repetitive injections. Taken together, these results indicate that LbCpf1-mediated in vivo genome editing to ablate pathologic angiogenesis provides an effective strategy for the treatment of AMD and other neovascularization-associated diseases.


Subject(s)
Choroidal Neovascularization/therapy , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Macular Degeneration/therapy , Animals , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Cell Line , Choroidal Neovascularization/etiology , Choroidal Neovascularization/genetics , Choroidal Neovascularization/pathology , Clostridiales/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Dependovirus/genetics , Disease Models, Animal , Endonucleases/administration & dosage , Endonucleases/genetics , Genetic Vectors/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intravitreal Injections , Lasers/adverse effects , Macular Degeneration/etiology , Macular Degeneration/genetics , Macular Degeneration/pathology , Male , Mice , Mice, Inbred C57BL , RNA, Guide, Kinetoplastida/genetics , Retinal Pigment Epithelium/blood supply , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/radiation effects , Specific Pathogen-Free Organisms , Treatment Outcome , Vascular Endothelial Growth Factor A/genetics
14.
Nat Biotechnol ; 36(6): 536-539, 2018 07.
Article in English | MEDLINE | ID: mdl-29702637

ABSTRACT

Adenine base editors (ABEs) composed of an engineered adenine deaminase and the Streptococcus pyogenes Cas9 nickase enable adenine-to-guanine (A-to-G) single-nucleotide substitutions in a guide RNA (gRNA)-dependent manner. Here we demonstrate application of this technology in mouse embryos and adult mice. We also show that long gRNAs enable adenine editing at positions one or two bases upstream of the window that is accessible with standard single guide RNAs (sgRNAs). We introduced the Himalayan point mutation in the Tyr gene by microinjecting ABE mRNA and an extended gRNA into mouse embryos, obtaining Tyr mutant mice with an albino phenotype. Furthermore, we delivered the split ABE gene, using trans-splicing adeno-associated viral vectors, to muscle cells in a mouse model of Duchenne muscular dystrophy to correct a nonsense mutation in the Dmd gene, demonstrating the therapeutic potential of base editing in adult animals.


Subject(s)
Gene Editing/methods , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Adenine/chemistry , Albinism/embryology , Albinism/genetics , Albinism/therapy , Animals , Base Sequence , Biotechnology , DNA/genetics , Disease Models, Animal , Dystrophin/deficiency , Dystrophin/genetics , Genetic Therapy/methods , HEK293 Cells , Humans , Mice , Mice, Knockout , Mice, Mutant Strains , Monophenol Monooxygenase/genetics , Targeted Gene Repair/methods
15.
Genome Res ; 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472270

ABSTRACT

Here, we report that CRISPR guide RNAs (gRNAs) with a 5'-triphosphate group (5'-ppp gRNAs) produced via in vitro transcription trigger RNA-sensing innate immune responses in human and murine cells, leading to cytotoxicity. 5'-ppp gRNAs in the cytosol are recognized by DDX58, which in turn activates type I interferon responses, causing up to ∼80% cell death. We show that the triphosphate group can be removed by a phosphatase in vitro and that the resulting 5'-hydroxyl gRNAs in complex with Cas9 or Cpf1 avoid innate immune responses and can achieve targeted mutagenesis at a frequency of 95% in primary human CD4+ T cells. These results are in line with previous findings that chemically synthesized sgRNAs with a 5'-hydroxyl group are much more efficient than in vitro-transcribed (IVT) sgRNAs in human and other mammalian cells. The phosphatase treatment of IVT sgRNAs is a cost-effective method for making highly active sgRNAs, avoiding innate immune responses in human cells.

16.
Nat Commun ; 8: 16105, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28742067

ABSTRACT

Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients.


Subject(s)
Dystrophin/genetics , Gene Transfer Techniques , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/genetics , Administration, Intravenous , Animals , Dependovirus , Disease Models, Animal , Dogs , Genetic Therapy , Genetic Vectors , Male , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Transgenes
17.
Nucleic Acids Res ; 45(13): 7897-7908, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28575452

ABSTRACT

Approximately 15% of non-small cell lung cancer cases are associated with a mutation in the epidermal growth factor receptor (EGFR) gene, which plays a critical role in tumor progression. With the goal of treating mutated EGFR-mediated lung cancer, we demonstrate the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system to discriminate between the oncogenic mutant and wild-type EGFR alleles and eliminate the carcinogenic mutant EGFR allele with high accuracy. We targeted an EGFR oncogene harboring a single-nucleotide missense mutation (CTG > CGG) that generates a protospacer-adjacent motif sequence recognized by the CRISPR/Cas9 derived from Streptococcus pyogenes. Co-delivery of Cas9 and an EGFR mutation-specific single-guide RNA via adenovirus resulted in precise disruption at the oncogenic mutation site with high specificity. Furthermore, this CRISPR/Cas9-mediated mutant allele disruption led to significantly enhanced cancer cell killing and reduced tumor size in a xenograft mouse model of human lung cancer. Taken together, these results indicate that targeting an oncogenic mutation using CRISPR/Cas9 offers a powerful surgical strategy to disrupt oncogenic mutations to treat cancers; similar strategies could be used to treat other mutation-associated diseases.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Genes, erbB-1 , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Mutation, Missense , A549 Cells , Alleles , Animals , CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/genetics , Gene Targeting , Humans , Lung Neoplasms/pathology , Male , Mice , Mice, Nude , Oncogenes , RNA Editing , Xenograft Model Antitumor Assays
18.
Nat Commun ; 8: 14500, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220790

ABSTRACT

Several CRISPR-Cas9 orthologues have been used for genome editing. Here, we present the smallest Cas9 orthologue characterized to date, derived from Campylobacter jejuni (CjCas9), for efficient genome editing in vivo. After determining protospacer-adjacent motif (PAM) sequences and optimizing single-guide RNA (sgRNA) length, we package the CjCas9 gene, its sgRNA sequence, and a marker gene in an all-in-one adeno-associated virus (AAV) vector and produce the resulting virus at a high titer. CjCas9 is highly specific, cleaving only a limited number of sites in the human or mouse genome. CjCas9, delivered via AAV, induces targeted mutations at high frequencies in mouse muscle cells or retinal pigment epithelium (RPE) cells. Furthermore, CjCas9 targeted to the Vegfa or Hif1a gene in RPE cells reduces the size of laser-induced choroidal neovascularization, suggesting that in vivo genome editing with CjCas9 is a new option for the treatment of age-related macular degeneration.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Cas Systems , Campylobacter jejuni/metabolism , Endonucleases/metabolism , Gene Editing/methods , Animals , Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Cells, Cultured , Choroidal Neovascularization/genetics , Dependovirus/genetics , Endonucleases/genetics , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Genome Res ; 27(3): 419-426, 2017 03.
Article in English | MEDLINE | ID: mdl-28209587

ABSTRACT

RNA-guided genome surgery using CRISPR-Cas9 nucleases has shown promise for the treatment of diverse genetic diseases. Yet, the potential of such nucleases for therapeutic applications in nongenetic diseases is largely unexplored. Here, we focus on age-related macular degeneration (AMD), a leading cause of blindness in adults, which is associated with retinal overexpression of, rather than mutations in, the VEGFA gene. Subretinal injection of preassembled, Vegfa gene-specific Cas9 ribonucleoproteins (RNPs) into the adult mouse eye gave rise to mutagenesis at the target site in the retinal pigment epithelium. Furthermore, Cas9 RNPs effectively reduced the area of laser-induced choroidal neovascularization (CNV) in a mouse model of AMD. Genome-wide profiling of Cas9 off-target effects via Digenome-seq showed that off-target mutations were rarely induced in the human genome. Because Cas9 RNPs can function immediately after in vivo delivery and are rapidly degraded by endogenous proteases, their activities are unlikely to be hampered by antibody- and cell-mediated adaptive immune systems. Our results demonstrate that in vivo genome editing with Cas9 RNPs has the potential for the local treatment for nongenetic degenerative diseases, expanding the scope of RNA-guided genome surgery to a new dimension.


Subject(s)
Bacterial Proteins/metabolism , Endonucleases/metabolism , Gene Editing/methods , Genetic Therapy/methods , Macular Degeneration/therapy , Vascular Endothelial Growth Factor A/genetics , 3T3 Cells , Animals , Bacterial Proteins/genetics , CRISPR-Associated Protein 9 , Endonucleases/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Proteolysis , Retina/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Vascular Endothelial Growth Factor A/metabolism
20.
Brief Funct Genomics ; 16(1): 38-45, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27562951

ABSTRACT

The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Genetic Therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...