Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(13): 133001, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613300

ABSTRACT

Exciton-polaritons confined in plasmonic cavities are hybridized light-matter quasiparticles, with distinct optical characteristics compared to plasmons and excitons alone. Here, we demonstrate the electric tunability of a single polaritonic quantum dot operating at room temperature in electric-field tip-enhanced strong coupling spectroscopy. For a single quantum dot in the nanoplasmonic tip cavity with variable dc local electric field, we dynamically control the Rabi frequency with the corresponding polariton emission, crossing weak to strong coupling. We model the observed behaviors based on the quantum confined Stark effect in the strong coupling regime.

2.
Nano Lett ; 24(12): 3777-3784, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497654

ABSTRACT

Gap plasmon (GP) resonance in static surface-enhanced Raman spectroscopy (SERS) structures is generally too narrow and not tunable. Here, we present an adaptive gap-tunable SERS device to selectively enhance and modulate different vibrational modes via active flexible Au nanogaps, with adaptive optical control. The tunability of GP resonance is up to ∼1200 cm-1 by engineering gap width, facilitated by mechanical bending of a polyethylene terephthalate substrate. We confirm that the tuned GP resonance selectively enhances different Raman spectral regions of the molecules. Additionally, we dynamically control the SERS intensity through the wavefront shaping of excitation beams. Furthermore, we demonstrate simulation results, exhibiting the mechanical and optical properties of a one-dimensional flexible nanogap and their advantage in high-speed biomedical sensing. Our work provides a unique approach for observing and controlling the enhanced chemical responses with dynamic tunability.

3.
Light Sci Appl ; 13(1): 30, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272869

ABSTRACT

Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.

4.
Nano Lett ; 24(1): 279-286, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38117534

ABSTRACT

Emerging light-matter interactions in metal-semiconductor hybrid platforms have attracted considerable attention due to their potential applications in optoelectronic devices. Here, we demonstrate plasmon-induced near-field manipulation of trionic responses in a MoSe2 monolayer using tip-enhanced cavity-spectroscopy (TECS). The surface plasmon-polariton mode on the Au nanowire can locally manipulate the exciton (X0) and trion (X-) populations of MoSe2. Furthermore, we reveal that surface charges significantly influence the emission and interconversion processes of X0 and X-. In the TECS configuration, the localized plasmon significantly affects the distributions of X0 and X- due to the modified radiative decay rate. Additionally, within the TECS cavity, the electric doping effect and hot electron generation enable dynamic interconversion between X0 and X- at the nanoscale. This work advances our understanding of plasmon-exciton-hot electron interactions in metal-semiconductor-metal hybrid structures, providing a foundation for an optimal trion-based nano-optoelectronic platform.

5.
Nano Converg ; 10(1): 57, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102309

ABSTRACT

Spatial manipulation of excitonic quasiparticles, such as neutral excitons, charged excitons, and interlayer excitons, in two-dimensional semiconductors offers unique capabilities for a broad range of optoelectronic applications, encompassing photovoltaics, exciton-integrated circuits, and quantum light-emitting systems. Nonetheless, their practical implementation is significantly restricted by the absence of electrical controllability for neutral excitons, short lifetime of charged excitons, and low exciton funneling efficiency at room temperature, which remain a challenge in exciton transport. In this comprehensive review, we present the latest advancements in controlling exciton currents by harnessing the advanced techniques and the unique properties of various excitonic quasiparticles. We primarily focus on four distinct control parameters inducing the exciton current: electric fields, strain gradients, surface plasmon polaritons, and photonic cavities. For each approach, the underlying principles are introduced in conjunction with its progression through recent studies, gradually expanding their accessibility, efficiency, and functionality. Finally, we outline the prevailing challenges to fully harness the potential of excitonic quasiparticles and implement practical exciton-based optoelectronic devices.

6.
Nat Commun ; 14(1): 1891, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37045823

ABSTRACT

The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS2 monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons. These significantly increase the electrons and efficiently funnel excitons in the lateral MIM waveguide, facilitating complete exciton-to-trion conversion even at ambient conditions. Additionally, we modulate the SPP mode using adaptive wavefront shaping, enabling all-optical control of the exciton-to-trion conversion rate and trion distribution in a reversible manner. Our work provides a platform for harnessing excitonic quasiparticles efficiently in the form of trions at ambient conditions, enabling high-efficiency photoconversion.

7.
ACS Nano ; 17(5): 4854-4861, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36857198

ABSTRACT

Optical computing with optical transistors has emerged as a possible solution to the exponentially growing computational workloads, yet an on-chip nano-optical modulation remains a challenge due to the intrinsically noninteracting nature of photons in addition to the diffraction limit. Here, we present an all-optical approach toward nano-excitonic transistors using an atomically thin WSe2/Mo0.5W0.5Se2 heterobilayer inside a plasmonic tip-based nanocavity. Through optical wavefront shaping, we selectively modulate tip-enhanced photoluminescence (TEPL) responses of intra- and interlayer excitons in a ∼25 nm2 area, demonstrating the enabling concept of an ultrathin 2-bit nano-excitonic transistor. We suggest a simple theoretical model describing the underlying adaptive TEPL modulation mechanism, which relies on the additional spatial degree of freedom provided by the presence of the plasmonic tip. Furthermore, we experimentally demonstrate a concept of a 2-trit nano-excitonic transistor, which can provide a technical basis for processing the massive amounts of data generated by emerging artificial intelligence technologies.

8.
Light Sci Appl ; 12(1): 59, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864035

ABSTRACT

Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe2/Mo0.5 W0.5 Se2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.

9.
Nat Commun ; 13(1): 4133, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840568

ABSTRACT

A quantitative single-molecule tip-enhanced Raman spectroscopy (TERS) study at room temperature remained a challenge due to the rapid structural dynamics of molecules exposed to air. Here, we demonstrate the hyperspectral TERS imaging of single or a few brilliant cresyl blue (BCB) molecules at room temperature, along with quantitative spectral analyses. Robust chemical imaging is enabled by the freeze-frame approach using a thin Al2O3 capping layer, which suppresses spectral diffusions and inhibits chemical reactions and contamination in air. For the molecules resolved spatially in the TERS image, a clear Raman peak variation up to 7.5 cm-1 is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks, we reveal the conformational heterogeneity at the single-molecule level. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies.

10.
Sci Adv ; 8(5): eabm5236, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35119920

ABSTRACT

Understanding and controlling the nanoscale transport of excitonic quasiparticles in atomically thin two-dimensional (2D) semiconductors are crucial to produce highly efficient nano-excitonic devices. Here, we present a nanogap device to selectively confine excitons or trions of 2D transition metal dichalcogenides at the nanoscale, facilitated by the drift-dominant exciton funneling into the strain-induced local spot. We investigate the spatiospectral characteristics of the funneled excitons in a WSe2 monolayer (ML) and converted trions in a MoS2 ML using hyperspectral tip-enhanced photoluminescence imaging with <15-nm spatial resolution. In addition, we dynamically control the exciton funneling and trion conversion rate by the gigapascal-scale tip pressure engineering. Through a drift-diffusion model, we confirm an exciton funneling efficiency of ∼25% with a significantly low strain threshold (∼0.1%), which sufficiently exceeds the efficiency of ∼3% in previous studies. This work provides a previously unexplored strategy to facilitate efficient exciton transport and trion conversion of 2D semiconductor devices.

11.
Nat Commun ; 12(1): 3465, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103520

ABSTRACT

Tip-enhanced nano-spectroscopy, such as tip-enhanced photoluminescence (TEPL) and tip-enhanced Raman spectroscopy (TERS), generally suffers from inconsistent signal enhancement and difficulty in polarization-resolved measurement. To address this problem, we present adaptive tip-enhanced nano-spectroscopy optimizing the nano-optical vector-field at the tip apex. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS. Employing a sequence feedback algorithm, we achieve ~4.4 × 104-fold TEPL enhancement of a WSe2 monolayer which is >2× larger than the normal TEPL intensity without wavefront shaping. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue molecules and the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced nano-spectroscopy thus provides for a systematic approach towards computational nanoscopy making optical nano-imaging more robust and widely deployable.

12.
ACS Nano ; 15(5): 9057-9064, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33988975

ABSTRACT

Strain engineering of perovskite quantum dots (pQDs) enables widely tunable photonic device applications. However, manipulation at the single-emitter level has never been attempted. Here, we present a tip-induced control approach combined with tip-enhanced photoluminescence (TEPL) spectroscopy to engineer strain, bandgap, and the emission quantum yield of a single pQD. Single CsPbBrxI3-x pQDs are clearly resolved through hyperspectral TEPL imaging with ∼10 nm spatial resolution. The plasmonic tip then directly applies pressure to a single pQD to facilitate a bandgap shift up to ∼62 meV with Purcell-enhanced PL increase as high as ∼105 for the strain-induced pQD. Furthermore, by systematically modulating the tip-induced compressive strain of a single pQD, we achieve dynamical bandgap engineering in a reversible manner. In addition, we facilitate the quantum dot coupling for a pQD ensemble with ∼0.8 GPa tip pressure at the nanoscale estimated theoretically. Our approach presents a strategy to tune the nano-opto-electro-mechanical properties of pQDs at the single-crystal level.

13.
Adv Mater ; 33(17): e2008234, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33709476

ABSTRACT

The tunability of the bandgap, absorption and emission energies, photoluminescence (PL) quantum yield, exciton transport, and energy transfer in transition metal dichalcogenide (TMD) monolayers provides a new class of functions for a wide range of ultrathin photonic devices. Recent strain-engineering approaches have enabled to tune some of these properties, yet dynamic control at the nanoscale with real-time and -space characterizations remains a challenge. Here, a dynamic nano-mechanical strain-engineering of naturally-formed wrinkles in a WSe2 monolayer, with real-time investigation of nano-spectroscopic properties is demonstrated using hyperspectral adaptive tip-enhanced PL (a-TEPL) spectroscopy. First, nanoscale wrinkles are characterized through hyperspectral a-TEPL nano-imaging with <15 nm spatial resolution, which reveals the modified nano-excitonic properties by the induced tensile strain at the wrinkle apex, for example, an increase in the quantum yield due to the exciton funneling, decrease in PL energy up to ≈10 meV, and a symmetry change in the TEPL spectra caused by the reconfigured electronic bandstructure. Then the local strain is dynamically engineered by pressing and releasing the wrinkle apex through an atomic force tip control. This nano-mechanical strain-engineering allows to tune the exciton dynamics and emission properties at the nanoscale in a reversible fashion. In addition, a systematic switching and modulation platform of the wrinkle emission is demonstrated, which provides a new strategy for robust, tunable, and ultracompact nano-optical sources in atomically thin semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...