Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2018: 8638294, 2018.
Article in English | MEDLINE | ID: mdl-29568769

ABSTRACT

AIM: Neonatal hypoxic-ischemia (HI) due to insufficient oxygen supply and blood flow during the prenatal and postnatal periods can cause cerebral palsy, a serious developmental condition. The purpose of this study was to investigate the efficacy of combining constraint-induced movement therapy (CIMT) and electroacupuncture to treat rat neonatal HI brain injury. METHODS: The left common carotid arteries of postnatal day 7 rats were ligated to induce HI brain injury, and the neonates were kept in a hypoxia chamber containing 8% oxygen for 2 hrs. Electroacupuncture at Baihui (GV 20) and Zusanli (ST 36) was performed concurrently with CIMT 3 weeks after HI induction for 4 weeks. RESULTS: Motor asymmetry after HI was significantly improved in the CIMT and electroacupuncture combination group, but HI lesion size was not improved. The combination of CIMT and electroacupuncture after HI injury increases NeuN and decreases GFAP levels in the cerebral cortex, suggesting that this combination treatment inversely regulates neurons and astrocytes. In addition, the combination treatment group reduced the level of cleaved caspase-3, a crucial mediator of apoptosis, in the cortex. CONCLUSIONS: Our findings indicate that a combination of CIMT and electroacupuncture is an effective method to treat hemiplegia due to neonatal HI brain injury.


Subject(s)
Brain Injuries/therapy , Electroacupuncture/methods , Hypoxia-Ischemia, Brain/therapy , Hypoxia/therapy , Animals , Animals, Newborn , Apoptosis/physiology , Brain Injuries/physiopathology , Cerebral Cortex/physiopathology , Disease Models, Animal , Humans , Hypoxia/physiopathology , Hypoxia-Ischemia, Brain/physiopathology , Neurons/pathology , Rats , Rats, Sprague-Dawley , Recovery of Function
2.
Oxid Med Cell Longev ; 2018: 2413841, 2018.
Article in English | MEDLINE | ID: mdl-30693061

ABSTRACT

AIM: Poststroke depression (PSD), which occurs in approximately one-third of stroke survivors, is clinically important because of its association with slow functional recovery and increased mortality. In addition, the underlying pathophysiological mechanisms are still poorly understood. METHODS: We used a mouse model of PSD to examine the neurobiological mechanisms of PSD and the beneficial effects of aripiprazole, an atypical antipsychotic drug. PSD was induced in mice by combining middle cerebral artery occlusion (MCAO) with spatial restraint stress. The body weight, sucrose preference, and forced swim tests were performed at 5, 7, and 9 weeks and the Morris water maze test at 10 weeks after completing MCAO and spatial restraint stress. RESULTS: Mice subjected to MCAO and spatial restraint stress showed significant depressive-like behavior in the sucrose preference test and forced swim test as well as cognitive impairment in the Morris water maze test. The PSD-like phenotype was accompanied by an indoleamine 2,3-dioxygenase 1 (IDO1) expression increase in the nucleus accumbens, hippocampus, and hypothalamus, but not in the striatum. Furthermore, the increased IDO1 levels were localized in Iba-1(+) cells but not in NeuN(+) or GFAP(+) cells, indicating that microglia-induced IDO1 expression was prominent in the PSD mouse brain. Moreover, 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), quinolinic acid (QUIN), and reactive oxygen species (ROS) were significantly increased in the nucleus accumbens, hippocampus, and hypothalamus of PSD mice. Importantly, a 2-week aripiprazole (1 mg/kg, per os) regimen, which was initiated 1 day after MCAO, ameliorated depressive-like behavior and impairment of cognitive functions in PSD mice that was accompanied by downregulation of IDO1, HAAO, QUIN, and ROS. CONCLUSIONS: Our results suggest that the IDO1-dependent neurotoxic kynurenine metabolism induced by microglia functions in PSD pathogenesis. The beneficial effect of aripiprazole on depressive-like behavior and cognitive impairment may be mediated by inhibition of IDO1, HAAO, QUIN, and ROS.


Subject(s)
Brain Ischemia/complications , Depressive Disorder/etiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Neurotoxicity Syndromes/etiology , Stress, Psychological/complications , Stroke/complications , 3-Hydroxyanthranilate 3,4-Dioxygenase/metabolism , Animals , Brain Ischemia/physiopathology , Depressive Disorder/metabolism , Depressive Disorder/pathology , Male , Mice , Mice, Inbred C57BL , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Quinolinic Acid/metabolism , Reactive Oxygen Species/metabolism , Restraint, Physical , Spatial Learning , Stroke/physiopathology
3.
Exp Ther Med ; 13(6): 2775-2782, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28587341

ABSTRACT

Constraint-induced movement therapy (CIMT) is used in stroke rehabilitation to promote recovery of upper limb motor function. However, its efficacy in improving functional outcomes in children with hemiplegic cerebral palsy has not been clearly determined in clinical or experimental research. The aim of our study was to assess the efficacy of a new experimental model of CIMT, evaluated in terms of mortality, stress, motor and cognitive function in rats having undergone a neonatal hypoxic-ischemic (HI) brain injury. Neonatal HI injury was induced at post-natal day 7 through unilateral ligation of the common carotid artery followed by exposure to hypoxia for 2 h. CIMT was implemented at 3 weeks, post-HI injury, using a pouch to constrain the unimpaired forelimb and forcing use of the affected forelimb using a motorized treadmill. After HI injury, animals demonstrated motor and cognitive deficits, as well as volumetric decreases in the ipsilateral hemisphere to arterial occlusion. CIMT yielded a modest recovery of motor and cognitive function, with no effect in reducing the size of the HI lesion or post-HI volumetric decreases in brain tissue. Therefore, although animal models of stroke have identified benefits of CIMT, CIMT was not sufficient to enhance brain tissue development and functional outcomes in an animal model of hemiplegic cerebral palsy. Based on our outcomes, we suggest that CIMT can be used as an adjunct treatment to further enhance the efficacy of a program of rehabilitation in children with hemiplegic cerebral palsy.

SELECTION OF CITATIONS
SEARCH DETAIL
...