Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 200: 106842, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936514

ABSTRACT

Current treatment for Glioblastoma Multiforme (GBM) is not efficient due to its aggressive nature, tendency to infiltrate surrounding brain tissue, and chemotherapy resistance. Tetrahydroquinoline scaffolds are emerging as a new class of drug for treating many human cancers including GBM. This study investigates the cytotoxicity effect of eight novel derivatives of 2-((3,4-dihydroquinolin-1(2H)-yl)(aryl)methyl)phenol, containing substitute 1 with reduced dihydroquinoline fused with cyclohexene ring and substitute 2 with phenyl and methyl group. The 4-position of the aryl ring was determinant for the desired cytotoxicity, and out of the 8 synthesized compounds, the 4-trifluoromethyl substituted derivative (4ag) exhibited the most anti-GBM potential effect compared to the standard chemotherapeutic agent, temozolomide (TMZ), with IC50 values of 38.3 µM and 40.6 µM in SNB19 and LN229 cell lines, respectively. Our results demonstrated that 4ag triggers apoptosis through the activation of Caspase-3/7. In addition, 4ag induced intracellular reactive oxygen species (iROS) which in turn elevated mitochondrial ROS (mtROS) and causes the disruption of the mitochondrial membrane potential (Δψmt) in both GBM cells. This compound also exhibited anti-migratory properties over the time in both the cell lines. Overall, these findings suggest that tetrahydroquinoline derivative, 4ag could lead to the development of a new drug for treating GBM.

2.
Int J Biol Macromol ; 254(Pt 3): 127909, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951450

ABSTRACT

Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 µM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.


Subject(s)
Glioblastoma , Receptor, trkA , Humans , Receptor, trkA/genetics , Receptor, trkA/metabolism , Molecular Docking Simulation , Neoplasm Recurrence, Local , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Glioblastoma/drug therapy , Glioblastoma/pathology
3.
Inflammopharmacology ; 31(5): 2421-2430, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37665448

ABSTRACT

PURPOSE: To evaluate the effect of oral magnesium sulfate (MgSO4) on the gene expression and serum levels of inflammatory cytokines including TNF-α, IL-18, IL-1ß, IL-6, and IFN-γ in patients with moderate coronary artery disease (CAD). METHODS: 60 CAD patients were selected based on angiography findings and were randomly divided into two groups that received 300 mg/day MgSO4 (n = 30) or placebo (n = 30) for 3 months. Gene expression and serum levels of inflammatory cytokines were assessed. RESULTS: After 3 months of intervention, gene expression and serum levels of IL-18 and TNF-α in the MgSO4 group were significantly less than the placebo group (P < 0.05). However, no significant difference in gene expression and serum levels of IL-1ß, IL-6, and IFN-γ was observed between the two groups (P > 0.05). In addition, within group analysis demonstrate that Mg-treatment significantly decrease serum level of TNF-α and IL-18 as compared to pretreatment. CONCLUSION: The results of our study demonstrate that 3-month magnesium sulfate administration (300 mg/day) to CAD patients could significantly decrease serum concentration and gene expression levels of IL-18 and TNF-α. Our findings support the potential beneficial effect of magnesium supplementation on alleviating CAD complications through modulating inflammatory cytokines.


Subject(s)
Coronary Artery Disease , Cytokines , Humans , Interleukin-18 , Tumor Necrosis Factor-alpha , Magnesium Sulfate/pharmacology , Magnesium Sulfate/therapeutic use , Coronary Artery Disease/drug therapy , Interleukin-6 , Gene Expression
5.
Indian J Clin Biochem ; 38(1): 59-66, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684501

ABSTRACT

Magnesium seems to play a role in improving cardiovascular function, but its exact mechanism is unknown. In this study, we hypothesized that magnesium could modulate the expression of genes involved in atherosclerosis. The aim of the present investigation was to evaluate the effect of magnesium sulfate on the expression of sirtuin1 (SIRT1), tumor protein p53 (TP53), and endothelial nitric oxide synthase (eNOS) genes in patients with atherosclerosis. This study was a placebo-controlled double-blind randomized clinical trial on 56 patients with angiographically proven atherosclerosis. Participants were randomly divided into two groups receiving 300 mg/day magnesium sulfate (n = 29) and placebo (n = 27) for three months (following up every month). Fasting blood samples were taken before and after the intervention and total RNA was extracted and used to evaluate the expression level of SIRT1, TP53, and eNOS genes by Real-Time PCR. The expression of eNOS gene was significantly increased (P < 0.0001) and the expression of TP53 gene was decreased (P = 0.02) in the magnesium sulfate group compared to the placebo group. But SIRT1 gene expression was not significantly different between the two groups. Our findings demonstrate that magnesium sulfate supplementation may have a protective role against the progression of atherosclerosis through upregulation of eNOS and downregulation of TP53 gene. Trial registration: This present clinical trial has been registered in the Iranian Registry of Clinical Trials (IRCT) with the registration code of "IRCT20151028024756N3", https://www.irct.ir/trial/29097?revision=114102. Registered on 16 December 2019.

6.
Indian J Clin Biochem ; 37(2): 159-168, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35463104

ABSTRACT

New investigations suggest a pivotal role of brain-derived neurotrophic factor (BDNF) in cardiovascular homeostasis. However, no data could indicate the association between BDNF methylation status and the risk of coronary artery disease (CAD). The aim of the present study was to assess the association of BDNF methylation status and its serum level with the severity of CAD. According to the angiography report, a total of 84 non-diabetic CAD patients with at least 50% stenosis in one of the major coronary arteries were selected as the CAD group. For comparison, 62 angiographically proven non-CAD participants were selected as control. Additionally, subjects were categorized according to the Gensini Scoring system. Blood sample was used for genomic DNA isolation. Methylation status of the BDNF gene in exonic region was determined using the MS-PCR method and serum BDNF levels were measured with ELISA. BDNF gene methylation was significantly higher in the CAD group than in the non-CAD group. After adjustment for confounding factors, BDNF gene hypermethylation increases the risk of CAD in the total population (OR = 2.769; 95% CI, 1.033-7.423; P = 0.043). BDNF gene hypermethylation was higher in patients with severe CAD than patients with mild CAD. Additionally, the serum BDNF level was not different from non-diabetic CAD and control groups. Our findings indicate that BDNF hypermethylation was associated with an increased risk of CAD, which may help identify subjects being at the risk of developing CAD. In addition, BDNF hypermethylation shows a significant correlation with the severity of CAD.

7.
Mol Biol Rep ; 49(4): 2755-2763, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35088375

ABSTRACT

BACKGROUND: Resistance to cisplatin is a major obstacle to effective treatment of bladder cancer (BC). The present study aimed to determine whether a combination of acriflavine (ACF) with cisplatin could potentiate the antitumor property of cisplatin against the BC cells. Furthermore, the molecular mechanism behind the anticancer action of ACF was considered. METHODS AND RESULTS: Two human BC cells (5637 and EJ138) contain mutated form of p53 was culture in standard condition. Cotreatment protocol (simultaneous combination of IC30 value of ACF + various dose of cisplatin for 72 h) and pretreatment protocol (pretreatment with IC15 value of ACF for 24 h + various dose of cisplatin for 48 h) was used to determine the effect of ACF on the cells' sensitivity to main drug cisplatin. To assess the mechanism of action of ACF, real-time PCR was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α), Bax, Bcl-2, topoisomerase1 (TOP1) and topoisomerase 2 (TOP2A). Combination of ACF with cisplatin either as cotreatment or opretreatment protocol could significantly reduce the IC50 values of cisplatin as compared to the IC50 of cisplatin when use as a single drug. In addition, ACF could markedly decrease mRNA expression of TOP1 and TOP2A without changing the expression of HIF-1ɑ, Bax and Bcl-2. CONCLUSIONS: Our findings indicate that combination of cisplatin with ACF was able to significantly enhance the sensitivity of BC cells to cisplatin. The antitumor activity of ACF is exerted through the downregulation of TOP1 and TOP2A genes expression. ACF may serve as an adjuvant to boost cisplatin-based chemotherapy.


Subject(s)
Antineoplastic Agents , Urinary Bladder Neoplasms , Acriflavine/pharmacology , Acriflavine/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Down-Regulation , Drug Resistance, Neoplasm , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
8.
World J Gastrointest Oncol ; 12(9): 942-956, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-33005290

ABSTRACT

5-flurouracil (5-FU)-based chemotherapy is the main pharmacological therapy for advanced colorectal cancer (CRC). Despite significant progress in the treatment of CRC during the last decades, 5-FU drug resistance remains the most important cause of failure in CRC therapy. Resistance to 5-FU is a complex and multistep process. Different mechanisms including microsatellite instability, increased expression level of key enzyme thymidylate synthase and its polymorphism, increased level of 5-FU-activating enzymes and mutation of TP53 are proposed as the main determinants of resistance to 5-FU in CRC cells. Recently, micro-ribonucleic acids (miRNA) and their alterations were found to have a crucial role in 5-FU resistance. In this regard, the miRNA-mediated mechanisms of 5-FU drug resistance reside among the new fields of pharmacogenetics of CRC drug response that has not been completely discovered. Identification of the biological markers that are related to response to 5-FU-based chemotherapy is an emerging field of precision medicine. This approach will have an important role in defining those patients who are most likely to benefit from 5-FU-based chemotherapy in the future. Thereby, the identification of 5-FU drug resistance mechanisms is an essential step to predict and eventually overcome resistance. In the present comprehensive review, we will summarize the latest knowledge regarding the molecular determinants of response to 5-FU-based chemotherapy in CRC by emphasizing the role of miRNAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...