Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 12(9): 1117-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22339065

ABSTRACT

The indolo[2,3-a]carbazole alkaloids constitute an important class of natural products with interesting and diverse biological activities. A series of novel ring-fused indolocarbazoles were synthesized and evaluated for inhibition of topoisomerase I-mediated relaxation of supercoiled DNA and in vitro antitumor activity. The derivatives bearing a methylenedioxy or an ethylenedioxy ring fused onto the nonglycosylated indole (1a, 1b) demonstrated more potent anti-topoisomerase I activity. The isopropylenedioxy analogue 1c was approximately half as active as 1a, while the O-dimethoxy analogue 1d and the regioisomers 2a and 2b were essentially devoid of measurable activity, implying that the stacking with the intact DNA strand has been impeded by these compounds due to steric hindrance. The newly synthesized indolocarbazoles were screened against the NCI's 60 tumor cell lines. The order of activity, based on the mean GI50 values, is as follows: 1a > 2a ~ 1d > 1b > MCR-47 > 2b. Though in general the analogues that showed potent activity against topoisomerase I (1a, 1b) also showed potent in vitro inhibition of tumor cell growth, the antitumor activity of the anti-topoisomerase I inactive 1d and 2a were intriguing. COMPARE analyses confirmed that the topoisomerase I is the primary target for 1a and 1b; however, other target(s) or pathway(s) may also be involved, with PLD1 and MERTK suggested. Further investigation of these molecular targets against these indolocarbazoles is warranted.


Subject(s)
Antineoplastic Agents/chemistry , Carbazoles/chemistry , DNA Topoisomerases, Type I/metabolism , Indoles/chemistry , Neoplasms/drug therapy , Neoplasms/enzymology , Topoisomerase I Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Indoles/pharmacology , Structure-Activity Relationship , Topoisomerase I Inhibitors/pharmacology
2.
Bioorg Med Chem Lett ; 20(18): 5389-93, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20719505

ABSTRACT

Apoptosis is a highly regulated process by which excessive cells are eliminated in order to maintain normal cell development and tissue homeostasis. Resistance to apoptosis often contributes to failure in cancer prevention and treatment. Apoptotic cell death regulators are considered important targets for discovery and development of new therapeutic agents in oncology research. A class of novel aza-lupane triterpenoids were designed, synthesized, and evaluated for antitumor activity against a panel of cancer cell lines of different histogenic origin and for ability to induce apoptosis. 3,30-Bis(aza) derivatives were identified not only to possess improved cytotoxicity compared to the natural product betulinic acid but also to affect cell death predominantly via apoptosis, whereas the mono(aza) derivatives apparently triggered cell death via different, non-apoptotic pathway(s).


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Triterpenes/chemistry , Triterpenes/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Screening Assays, Antitumor , Humans , Neoplasms/drug therapy , Pentacyclic Triterpenes , Structure-Activity Relationship , Triterpenes/chemical synthesis , Betulinic Acid
3.
J Org Chem ; 75(14): 4769-77, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20545375

ABSTRACT

Squalene synthase catalyzes the conversion of two molecules of (E,E)-farnesyl diphosphate to squalene via the cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). Since this novel reaction constitutes the first committed step in sterol biosynthesis, there has been considerable interest and research on the stereochemistry and mechanism of the process and in the design of selective inhibitors of the enzyme. This paper reports the synthesis and characterization of five racemic and two enantiopure aziridine analogues of PSPP and the evaluation of their potencies as inhibitors of recombinant yeast squalene synthase. The key aziridine-2-methanol intermediates (6-OH, 7-OH, and 8-OH) were obtained by N-alkylations or by an N-acylation-reduction sequence of (+/-)-, (2R,3S)-, and (2S,3R)-2,3-aziridinofarnesol (9-OH) protected as tert-butyldimethylsilyl ethers. S(N)2 displacements of the corresponding methanesulfonates with pyrophosphate and methanediphosphonate anions afforded aziridine 2-methyl diphosphates and methanediphosphonates bearing N-undecyl, N-bishomogeranyl, and N-(alpha-methylene)bishomogeranyl substituents as mimics for the 2,6,10-trimethylundeca-2,5,9-trienyl side chain of PSPP. The 2R,3S diphosphate enantiomer bearing the N-bishomogeranyl substituent corresponding in absolute stereochemistry to PSPP proved to be the most potent inhibitor (IC(50) 1.17 +/- 0.08 muM in the presence of inorganic pyrophosphate), a value 4-fold less than that of its 2S,3R stereoisomer. The other aziridine analogues bearing the N-(alpha-methylene)bishomogeranyl and N-undecyl substituents, and the related methanediphosphonates, exhibited lower affinities for recombinant squalene synthase.


Subject(s)
Aziridines/chemistry , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Polyisoprenyl Phosphates/chemistry , Sesquiterpenes/chemistry , Squalene/chemistry , Catalysis , Farnesyl-Diphosphate Farnesyltransferase/chemistry , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Kinetics , Molecular Structure , Stereoisomerism
4.
Bioorg Med Chem Lett ; 19(8): 2168-71, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19286375

ABSTRACT

New A-ring modified betulin and dihydrobetulin derivatives possessing the 2-cyano-1-en-3-one moiety were prepared and tested for cytotoxicity in seven cancer cell lines. The most active agent 9a synthesized in this account was further demonstrated to induce apoptosis and to activate caspases in malignant melanoma cells.


Subject(s)
Growth Inhibitors/chemical synthesis , Growth Inhibitors/toxicity , Triterpenes/chemical synthesis , Triterpenes/toxicity , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Pentacyclic Triterpenes , Betulinic Acid
5.
J Med Chem ; 45(11): 2185-96, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12014956

ABSTRACT

We report the inhibition of a human recombinant geranylgeranyl diphosphate synthase (GGPPSase) by 23 bisphosphonates and six azaprenyl diphosphates. The IC50 values range from 140 nM to 690 microM. None of the nitrogen-containing bisphosphonates that inhibit farnesyl diphosphate synthase were effective in inhibiting the GGPPSase enzyme. Using three-dimensional quantitative structure-activity relationship/comparative molecular field analysis (CoMFA) methods, we find a good correlation between experimental and predicted activity: R2 = 0.938, R(cv)2 = 0.900, R(bs)2 = 0.938, and F-test = 86.8. To test the predictive utility of the CoMFA approach, we used three training sets of 25 compounds each to generate models to predict three test sets of three compounds. The rms pIC50 error for the nine predictions was 0.39. We also investigated the pharmacophore of these GGPPSase inhibitors using the Catalyst method. The results demonstrated that Catalyst predicted the pIC50 values for the nine test set compounds with an rms error of 0.28 (R2 between experimental and predicted activity of 0.948).


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Diphosphonates/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Organophosphates/chemical synthesis , Alkyl and Aryl Transferases/chemistry , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Bone Resorption/drug therapy , Diphosphonates/chemistry , Enzyme Inhibitors/chemistry , Farnesyltranstransferase , Humans , Models, Molecular , Organophosphates/chemistry , Quantitative Structure-Activity Relationship , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...