Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37895578

ABSTRACT

For this study, we investigated efficient strategies for the recovery of individual links in power grids governed by the direct current (DC) power flow model, under random link failures. Our primary objective was to explore the efficacy of recovering failed links based solely on topological network metrics. In total, we considered 13 recovery strategies, which encompassed 2 strategies based on link centrality values (link betweenness and link flow betweenness), 8 strategies based on the products of node centrality values at link endpoints (degree, eigenvector, weighted eigenvector, closeness, electrical closeness, weighted electrical closeness, zeta vector, and weighted zeta vector), and 2 heuristic strategies (greedy recovery and two-step greedy recovery), in addition to the random recovery strategy. To evaluate the performance of these proposed strategies, we conducted simulations on three distinct power systems: the IEEE 30, IEEE 39, and IEEE 118 systems. Our findings revealed several key insights: Firstly, there were notable variations in the performance of the recovery strategies based on topological network metrics across different power systems. Secondly, all such strategies exhibited inferior performance when compared to the heuristic recovery strategies. Thirdly, the two-step greedy recovery strategy consistently outperformed the others, with the greedy recovery strategy ranking second. Based on our results, we conclude that relying solely on a single metric for the development of a recovery strategy is insufficient when restoring power grids following link failures. By comparison, recovery strategies employing greedy algorithms prove to be more effective choices.

2.
Entropy (Basel) ; 25(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37190444

ABSTRACT

Network controllability and its robustness have been widely studied. However, analytical methods to calculate network controllability with respect to node in- and out-degree targeted removals are currently lacking. This paper develops methods, based on generating functions for the in- and out-degree distributions, to approximate the minimum number of driver nodes needed to control directed networks, during node in- and out-degree targeted removals. By validating the proposed methods on synthetic and real-world networks, we show that our methods work reasonably well. Moreover, when the fraction of the removed nodes is below 10% the analytical results of random removals can also be used to predict the results of targeted node removals.

4.
Nat Commun ; 13(1): 1442, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301305

ABSTRACT

How does the spread of behavior affect consensus-based collective decision-making among animals, humans or swarming robots? In prior research, such propagation of behavior on social networks has been found to exhibit a transition from simple contagion-i.e, based on pairwise interactions-to a complex one-i.e., involving social influence and reinforcement. However, this rich phenomenology appears so far limited to threshold-based decision-making processes with binary options. Here, we show theoretically, and experimentally with a multi-robot system, that such a transition from simple to complex contagion can also bed observed in an archetypal model of distributed decision-making devoid of any thresholds or nonlinearities. Specifically, we uncover two key results: the nature of the contagion-simple or complex-is tightly related to the intrinsic pace of the behavior that is spreading, and the network topology strongly influences the effectiveness of the behavioral transmission in ways that are reminiscent of threshold-based models. These results offer new directions for the empirical exploration of behavioral contagions in groups, and have significant ramifications for the design of cooperative and networked robot systems.


Subject(s)
Models, Theoretical , Social Networking , Animals , Reinforcement, Psychology
5.
Phys Rev E ; 99(1-1): 012311, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780227

ABSTRACT

Networks are often made up of several layers that exhibit diverse degrees of interdependencies. An interdependent network consists of a set of graphs G that are interconnected through a weighted interconnection matrix B, where the weight of each intergraph link is a non-negative real number p. Various dynamical processes, such as synchronization, cascading failures in power grids, and diffusion processes, are described by the Laplacian matrix Q characterizing the whole system. For the case in which the multilayer graph is a multiplex, where the number of nodes in each layer is the same and the interconnection matrix B=pI, I being the identity matrix, it has been shown that there exists a structural transition at some critical coupling p^{*}. This transition is such that dynamical processes are separated into two regimes: if p>p^{*}, the network acts as a whole; whereas when p

6.
Phys Rev E ; 94(4-1): 042315, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841560

ABSTRACT

Various real-world networks interact with and depend on each other. The design of the interconnection between interacting networks is one of the main challenges to achieve a robust interdependent network. Due to cost considerations, network providers are inclined to interconnect nodes that are geographically close. Accordingly, we propose two topologies, the random geographic graph and the relative neighborhood graph, for the design of interconnection in interdependent networks that incorporates the geographic location of nodes. Differing from the one-to-one interconnection studied in the literature, one node in one network can depend on an arbitrary number of nodes in the other network. We derive the average number of interdependent links for the two topologies, which enables their comparison. For the two topologies, we evaluate the impact of the interconnection structure on the robustness of interdependent networks against cascading failures. The two topologies are assessed on the real-world coupled Italian Internet and the electric transmission network. Finally, we propose the derivative of the largest mutually connected component with respect to the fraction of failed nodes as a robustness metric. This robustness metric quantifies the damage of the network introduced by a small fraction of initial failures well before the critical fraction of failures at which the whole network collapses.

SELECTION OF CITATIONS
SEARCH DETAIL
...