Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiol Infect ; 145(14): 2949-2960, 2017 10.
Article in English | MEDLINE | ID: mdl-28868994

ABSTRACT

Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.


Subject(s)
Alphavirus Infections/epidemiology , Disease Outbreaks , Ross River virus/physiology , Alphavirus Infections/virology , Animals , Culicidae/virology , Forecasting , Humans , Incidence , Probability , Western Australia
2.
Epidemiol Infect ; 145(4): 656-666, 2017 03.
Article in English | MEDLINE | ID: mdl-27890043

ABSTRACT

Most vector-borne diseases infect multiple host species, but disentangling the relative importance of different host species to transmission can be complex. Here we study how host species' abundance and competence (duration and titre of parasitaemia) influence host importance during epidemic scenarios. We evaluate this theory using Ross River virus (RRV, family Togaviridae, genus Alphavirus), a multi-host mosquito-borne disease with significant human health impacts across Australia and Papua New Guinea. We used host contribution models to find the importance of key hosts (possums, wallabies, kangaroos, horses, humans) in typical mammal communities around five Australian epidemic centres. We found humans and possums contributed most to epidemic RRV transmission, owing to their high abundances, generally followed by macropods. This supports humans as spillover hosts, and that human-mosquito and possum-mosquito transmission is predominant during epidemics. Sensitivity analyses indicate these findings to be robust across epidemic centres. We emphasize the importance of considering abundance and competence in identifying key hosts (during epidemics in this case), and that competence alone is inadequate. Knowledge of host importance in disease transmission may help to equip health agencies to bring about greater effectiveness of disease mitigation strategies.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus Infections/veterinary , Disease Reservoirs , Disease Transmission, Infectious , Disease Vectors , Epidemics , Ross River virus/isolation & purification , Alphavirus Infections/transmission , Animals , Animals, Wild , Australia/epidemiology , Culicidae , Epidemiologic Methods , Humans , Models, Statistical , Papua New Guinea/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...