Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Energy Adv ; 2(11): 1893-1904, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38013932

ABSTRACT

CO2 electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desired carbon products at high current densities, but have limited stability. In this study, we explore the adaption of a carbon-free GDE from a Chlor-alkali electrolysis process as a cathode for gas-fed CO2 electrolysis. We determine the impact of electrowetting on the electrochemical performance by analyzing the Faradaic efficiency for CO at industrially relevant current density. The characterization of used GDEs with X-ray photoelectron spectroscopy (XPS) and X-Ray diffraction (XRD) reveals a potential-dependent degradation, which can be explained through chemical polytetrafluorethylene (PTFE) degradation and/or physical erosion of PTFE through the restructuring of the silver surface. Our results further suggest that electrowetting-induced flooding lets the Faradaic efficiency for CO drop below 40% after only 30 min of electrolysis. We conclude that the effect of electrowetting has to be managed more carefully before the investigated carbon-free GDEs can compete with carbon-based GDEs as cathodes for CO2 electrolysis. Further, not only the conductive phase (such as carbon), but also the binder (such as PTFE), should be carefully selected for stable CO2 reduction.

2.
Chempluschem ; 88(4): e202300112, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37042441

ABSTRACT

Electrocatalytic CO2 reduction processes are generally coupled with the oxidation of water. Process economics can greatly improve by replacing the water oxidation with a more valuable oxidation reaction, a process called paired electrolysis. Here we report the feasibility of pairing CO2 reduction with the oxidation of glycerol on Ni3 S2 /NF anodes to produce formate at both anode and cathode. Initially we optimized the oxidation of glycerol to maximize the Faraday efficiency to formate by using design of experiments. In flow cell electrolysis, excellent selectivity (up to 90 % Faraday efficiency) was achieved at high current density (150 mA/cm2 of geometric surface area). Then we successfully paired the reduction of CO2 with the oxidation of glycerol. A prerequisite for industrial application is to obtain reaction mixtures with a high concentration of formate to enable efficient downstream separation. We show that the anodic process is limited in formate concentration, as Faraday efficiency to formate greatly decreases when operating at 2.5 M formate (∼10 w%) in the reaction mixture due to over-oxidation of formate. We identify this as a major bottleneck for the industrial feasibility of this paired electrolysis process.

3.
ACS Sustain Chem Eng ; 10(14): 4683-4693, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35433135

ABSTRACT

Electrochemical CO2 reduction is a promising process to store intermittent renewable energy in the form of chemical bonds and to meet the demand for hydrocarbon chemicals without relying on fossil fuels. Researchers in the field have used gas diffusion electrodes (GDEs) to supply CO2 to the catalyst layer from the gas phase. This approach allows us to bypass mass transfer limitations imposed by the limited solubility and diffusion of CO2 in the liquid phase at a laboratory scale. However, at a larger scale, pressure differences across the porous gas diffusion layer can occur. This can lead to flooding and electrolyte breakthrough, which can decrease performance. The aim of this study is to understand the effects of the GDE structure on flooding behavior and CO2 reduction performance. We approach the problem by preparing GDEs from commercial substrates with a range of structural parameters (carbon fiber structure, thickness, and cracks). We then determined the liquid breakthrough pressure and measured the Faradaic efficiency for CO at an industrially relevant current density. We found that there is a trade-off between flooding resistance and mass transfer capabilities that limits the maximum GDE height of a flow-by electrolyzer. This trade-off depends strongly on the thickness and the structure of the carbon fiber substrate. We propose a design strategy for a hierarchically structured GDE, which might offer a pathway to an industrial scale by avoiding the trade-off between flooding resistance and CO2 reduction performance.

4.
ACS Appl Energy Mater ; 5(12): 15125-15135, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36590882

ABSTRACT

Electrochemical CO2 reduction has the potential to use excess renewable electricity to produce hydrocarbon chemicals and fuels. Gas diffusion electrodes (GDEs) allow overcoming the limitations of CO2 mass transfer but are sensitive to flooding from (hydrostatic) pressure differences, which inhibits upscaling. We investigate the effect of the flooding behavior on the CO2 reduction performance. Our study includes six commercial gas diffusion layer materials with different microstructures (carbon cloth and carbon paper) and thicknesses coated with a Ag catalyst and exposed to differential pressures corresponding to different flow regimes (gas breakthrough, flow-by, and liquid breakthrough). We show that physical electrowetting further limits the flow-by regime at commercially relevant current densities (≥200 mA cm-2), which reduces the Faradaic efficiency for CO (FECO) for most carbon papers. However, the carbon cloth GDE maintains its high CO2 reduction performance despite being flooded with the electrolyte due to its bimodal pore structure. Exposed to pressure differences equivalent to 100 cm height, the carbon cloth is able to sustain an average FECO of 69% at 200 mA cm-2 even when the liquid continuously breaks through. CO2 electrolyzers with carbon cloth GDEs are therefore promising for scale-up because they enable high CO2 reduction efficiency while tolerating a broad range of flow regimes.

5.
J Chem Phys ; 151(14): 144708, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615263

ABSTRACT

Electronic doping of semiconductor nanomaterials can be efficiently achieved using electrochemistry. However, the injected charge carriers are usually not very stable. After disconnecting the cell that is used for electrochemical doping, the carrier density drops, typically in several minutes. While there are multiple possible causes for this, we demonstrate here using n-doped ZnO quantum-dot (QD) films of variable thickness that the dominant mechanism is reduction of solvent impurities by the injected electrons. We subsequently investigate two different ways to enhance the doping stability of ZnO QD films. The first method uses preemptive reduction of the solvent impurities; the second method involves a solid covering the QD film, which hinders impurity diffusion to the film. Both methods enhance the doping stability of the QD films greatly.

6.
ACS Appl Nano Mater ; 2(8): 4900-4909, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31475245

ABSTRACT

Semiconductor films that allow facile ion transport can be electronically doped via electrochemistry, where the amount of injected charge can be controlled by the potential applied. To apply electrochemical doping to the design of semiconductor devices, the injected charge has to be stabilized to avoid unintentional relaxation back to the intrinsic state. Here, we investigate methods to increase the stability of electrochemically injected charges in thin films of a wide variety of semiconductor materials, namely inorganic semiconductors (ZnO NCs, CdSe NCs, and CdSe/CdS core/shell NCs) and organic semiconductors (P3DT, PCBM, and C60). We show that by charging the semiconductors at elevated temperatures in solvents with melting points above room temperature, the charge stability at room temperature increases greatly, from seconds to days. At reduced temperature (-75 °C when using succinonitrile as electrolyte solvent) the injected charge becomes entirely stable on the time scale of our experiments (up to several days). Other high melting point solvents such as dimethyl sulfone, ethylene carbonate, and poly(ethylene glycol) (PEG) also offer increased charge stability at room temperature. Especially the use of PEG increases the room temperature charge stability by several orders of magnitude compared to using acetonitrile. We discuss how this improvement of the charge stability is related to the immobilization of electrolyte ions and impurities. While the electrolyte ions are immobilized, conductivity measurements show that electrons in the semiconductor films remain mobile. These results highlight the potential of using solidified electrolytes to stabilize injected charges, which is a promising step toward making semiconductor devices based on electrochemically doped semiconductor thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...