Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 849: 157877, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35944644

ABSTRACT

Forensic methods to independently trace timber origin are essential to combat illegal timber trade. Tracing product origin by analysing their multi-element composition has been successfully applied in several commodities, but its potential for timber is not yet known. To evaluate this potential the drivers of wood multi-elemental composition need to be studied. Here we report on the first study relating wood multi-elemental composition of forest trees to soil chemical and physical properties. We studied the reactive soil element pools and the multi-elemental composition in sapwood and heartwood for 37 Azobé (Lophira alata) trees at two forest sites in Cameroon. A total of 46 elements were measured using ICP-MS. We also measured three potential drivers of soil and wood elemental composition: clay content, soil organic matter and pH. We tested associations between soil and wood using multiple regressions and multivariate analyses (Mantel test, db-RDA). Finally, we performed a Random Forest analysis of heartwood elemental composition to check site assignment accuracy. We found elemental compositions of soil, sapwood and heartwood to be significantly associated. Soil clay content and organic matter positively influenced individual element concentrations (for 13 and 9 elements out of 46 respectively) as well as the multi-elemental composition in wood. However, associations between wood and topsoil elemental concentrations were only significant for one element. We found close associations between element concentrations and composition in sapwood and heartwood. Lastly, the Random Forest assignment success was 97.3 %. Our findings indicate that wood elemental composition is associated with that in the topsoil and its variation is related to soil clay and organic matter content. These associations suggests that the multi-elemental composition of wood can yield chemical fingerprints obtained from sites that differ in soil properties. This finding in addition to the high assignment accuracy shows potential of multi-element analysis for tracing wood origin.


Subject(s)
Soil , Wood , Cameroon , Clay , Soil/chemistry , Wood/chemistry
2.
Sci Total Environ ; 815: 152738, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34974002

ABSTRACT

Mitigation measures are needed for reducing chronic dissolved phosphorus (P) losses from agricultural soils with a legacy of excessive P inputs to surface waters. Since pipe drains are an important pathway for P transport from agricultural soils to surface waters in flat areas, removing P from drainage water can be an effective measure. During a 4.5 year-field experiment, we tested the performance of a pipe drain enveloped with Fe-coated sand for removing soluble P from drainage water. Iron-coated sand is a by-product of the drinking water industry and has a high ability to bind P. The P concentration in the effluent from the enveloped pipe drain remained at a very low level over the entire monitoring period, with a removal percentage amounting to 93% for total P. During the field experiment, the enveloped pipe drain was below the groundwater level for a prolonged time. Nevertheless, no reduction of Fe(III) in the Fe-coated sand occurred during the first two years, most likely due to preferential reduction of Mn oxides present in the coatings of the sand particles, as reflected in elevated effluent Mn concentrations. Thereafter, reductive dissolution of Fe oxides in the coatings caused a gradual increase in the Fe concentration in the enveloped pipe drain effluent over time. Concomitantly, the dissolved Mn concentration decreased, most probably due to the depletion in easily accessible Mn oxides in the Fe-coated sand. The Fe in the Fe-coated sand was identified as silicate-containing ferrihydrite (Fh). The submerged conditions of the enveloped pipe drain neither affected the stability of Fh in the Fe-coated sand nor the ability of this measure to capture P from drainage water. Enveloping pipe drains with Fe-coated sand is an effective method for reducing dissolved P inputs from agricultural soils to surface waters and holds great promise for implementation in practice.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Ferric Compounds , Iron , Phosphorus , Sand , Water Pollutants, Chemical/analysis
3.
Sci Rep ; 10(1): 17804, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082411

ABSTRACT

Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40-100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5-6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.


Subject(s)
Agriculture/methods , Fabaceae/physiology , Fertilization , Phosphorus , Poaceae/physiology , Crop Production , Fertilizers , Humans , Soil/chemistry , Tropical Climate
4.
Environ Sci Technol ; 54(19): 11990-12000, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32902278

ABSTRACT

Assessment of the surface reactivity of natural metal-(hydr)oxide nanoparticles is necessary for predicting ion adsorption phenomena in soils using surface complexation modeling. Here, we describe how the equilibrium concentrations of PO4, obtained with 0.5 M NaHCO3 extractions at different solution-to-soil ratios, can be interpreted with a state-of-the-art ion adsorption model for ferrihydrite to assess the reactive surface area (RSA) of agricultural top soils. Simultaneously, the method reveals the fraction of reversibly adsorbed soil PO4 (R-PO4). The applied ion-probing methodology shows that ferrihydrite is a better proxy than goethite for consistently assessing RSA and R-PO4. The R-PO4 pool agrees well with ammonium oxalate (AO)-extractable phosphorus, but only if measured as orthophosphate. The RSA varied between ∼2 and 20 m2/g soil. The corresponding specific surface area (SSA) of the natural metal-(hydr)oxide fraction is ∼350-1400 m2/g, illustrating that this property is highly variable and cannot be represented by a single value based on the AO-extractable oxide content. The soil organic carbon (SOC) content of our top soils increases linearly not only with the increase in RSA but remarkably also with the increase in mean particle size (1.5-5 nm). To explain these observations, we present a structural model for organo-mineral associations based on the coordination of SOC particles to metal-(hydr)oxide cores.


Subject(s)
Nanoparticles , Soil Pollutants , Adsorption , Carbon , Ferric Compounds , Oxides , Soil , Soil Pollutants/analysis
5.
Water Res ; 99: 83-90, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27140905

ABSTRACT

Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments.


Subject(s)
Phosphorus/chemistry , Rivers , Colloids/chemistry , Fractionation, Field Flow , Iron/chemistry
6.
Environ Geochem Health ; 38(6): 1355-1372, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26832131

ABSTRACT

Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.


Subject(s)
Cadmium/chemistry , Cadmium/metabolism , Oryza/metabolism , Solubility , Food Contamination/analysis , Oxidation-Reduction , Plant Leaves/chemistry , Plant Roots/chemistry , Rhizosphere , Soil , Soil Pollutants/chemistry , Time Factors
7.
Environ Sci Technol ; 48(8): 4307-16, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24601526

ABSTRACT

Colloids may facilitate the transport of trace elements and nutrients like phosphate in soil. In this study, we characterized soil colloids (<0.45 µm), extracted from four agricultural soils by Na-bicarbonate and Na-pyrophosphate, by two complementary analytical techniques; asymmetric flow field-flow fractionation (AF4) and X-ray absorption spectroscopy (XAS). The combined results from AF4 and XAS show that colloidal Fe is present as (i) free Fe-(hydr)oxide nanoparticles, (ii) Fe-(hydr)oxides associated with clay minerals, and (iii) Fe in clay minerals. Free Fe-(hydr)oxide nanoparticles, which can be as small as 2-5 nm, are extracted with Na-pyrophosphate but not with Na-bicarbonate, except for one soil. In contrast, Fe-(hydr)oxides associated with clay minerals are dispersed by both extractants. XAS results show that the speciation of Fe in the colloidal fractions closely resembles the speciation of Fe in the bulk soil, indicating that dispersion of colloidal Fe from the studied soils was rather unselective. In one Fe-rich soil, colloidal Fe was dominantly dispersed in the form of free Fe-(hydr)oxide nanoparticles. In the other three soils, dispersed Fe-(hydr)oxides were dominantly associated with clay minerals, suggesting that their dispersion as free nanoparticles was inhibited by strong attachment. However, in these soils, Fe-(hydr)oxides can be dispersed as oxide-clay associations and may as such facilitate the transport of trace elements.


Subject(s)
Fractionation, Field Flow/methods , Iron/analysis , Soil/chemistry , X-Ray Absorption Spectroscopy/methods , Carbon/analysis , Colloids , Dithionite/chemistry , Hydroxides/chemistry , Nanoparticles/analysis , Oxalates/chemistry , Phosphates/analysis , Soil Pollutants/analysis , Ultraviolet Rays
8.
Environ Toxicol Chem ; 33(4): 743-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24318461

ABSTRACT

The impact of silver nanoparticles (AgNP; at 0 mg Ag/kg, 1.5 mg Ag/kg, 15.4 mg Ag/kg, and 154 mg Ag/kg soil) and silver nitrate (AgNO3 ; 15.4 mg Ag/kg soil) on earthworms, Lumbricus rubellus, was assessed. A 4-wk exposure to the highest AgNP treatment reduced growth and reproduction compared with the control. Silver nitrate (AgNO3 ) exposure also impaired reproduction, but not as much as the highest AgNP treatment. Long-term exposure to the highest AgNP treatment caused complete juvenile mortality. All AgNP treatments induced tissue pathology. Population modeling demonstrated reduced population growth rates for the AgNP and AgNO3 treatments, and no population growth at the highest AgNP treatment because of juvenile mortality. Analysis of AgNP treated soil samples revealed that single AgNP and AgNP clusters were present in the soil, and that the total Ag in soil porewater remained high throughout the long-term experiment. In addition, immune cells (coelomocytes) of earthworms showed sensitivity to both AgNP and AgNO3 in vitro. Overall, the present study indicates that AgNP exposure may affect earthworm populations and that the exposure may be prolonged because of the release of a dissolved Ag fraction to soil porewater.


Subject(s)
Metal Nanoparticles/toxicity , Oligochaeta/drug effects , Silver Nitrate/toxicity , Silver/toxicity , Soil Pollutants/toxicity , Animals , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Oligochaeta/physiology , Oligochaeta/ultrastructure , Particle Size , Reproduction/drug effects , Silver/chemistry
9.
J Environ Qual ; 42(1): 250-9, 2013.
Article in English | MEDLINE | ID: mdl-23673760

ABSTRACT

Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an important pathway of P to surface waters, removing P from drainage water has a large potential to reduce P losses. In a field trial, we tested the performance of a pipe drain enveloped with Fe-coated sand, a side product of the drinking water industry with a high ability to bind P, to remove P from the drainage water. The results of this trial, encompassing more than one hydrological season, are very encouraging because the efficiency of this mitigation measure to remove P amounted to 94%. During the trial, the pipe drains were below the groundwater level for a prolonged time. Nevertheless, no reduction of Fe(III) in the Fe-coated sand occurred, which was most likely prevented by reduction of Mn oxides present in this material. The enveloped pipe drain was estimated to be able to lower the P concentration in the effluent to the desired water quality criterion for about 14 yr. Manganese oxides are expected to be depleted after 5 to 10 yr. The performance of the enveloped pipe drain, both in terms of its ability to remove P to a sufficiently low level and the stability of the Fe-coated sand under submerged conditions in the long term, needs prolonged experimental research.


Subject(s)
Iron , Phosphorus , Ferric Compounds , Phosphorus/metabolism , Soil , Water , Water Pollutants, Chemical
10.
J Environ Qual ; 42(2): 464-73, 2013.
Article in English | MEDLINE | ID: mdl-23673839

ABSTRACT

Phosphorus transport from agricultural land contributes to eutrophication of surface waters. Pipe drain and trench waters from a grassland field on a heavy clay soil in the Netherlands were sampled before and after manure application. Phosphorus speciation was analyzed by physicochemical P fractionation, and the colloidal P fraction in the dissolved fraction (<0.45 µm) was analyzed by asymmetric flow field-flow fractionation (AF4) coupled to high-resolution inductively coupled plasma-mass spectrometry and ultraviolet diode array detector. When no manure was applied for almost 7 mo, total P (TP) concentrations were low (<21 µmol L), and TP was almost evenly distributed among dissolved reactive P (DRP), dissolved unreactive P (DUP), and particulate P (PP). Total P concentrations increased by a factor of 60 and 4 when rainfall followed shortly after application of cattle slurry or its solid fraction, respectively. Under these conditions, DRP contributed 50% or more to TP. The P speciation within the DUP and PP fractions varied among the different sampling times. Phosphorus associated with dissolved organic matter, probably via cation bridging, comprised a small fraction of DUP at all sampling times. Colloidal P coeluted with clay particles when P application was withheld for almost 7 mo and after application of the solid cattle slurry fraction. At these sampling times, PP correlated well with particulate Fe, Al, and Si, indicating that P is associated with colloidal clay particles. After cattle slurry application, part of DUP was probably present as phospholipids. Physicochemical fractionation combined with AF4 analysis is a promising tool to unravel the speciation of colloidal P in environmental water samples.


Subject(s)
Phosphorus , Soil , Animals , Drainage , Manure , Phosphorus/chemistry , Soil Pollutants , Water , Water Movements
11.
J Environ Qual ; 41(3): 621-7, 2012.
Article in English | MEDLINE | ID: mdl-22565243

ABSTRACT

Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be needed to address P transfers from soils and applied P sources. Innovative remediation practices are being developed to remove nonpoint P sources from surface water and groundwater using P sorbing materials (PSMs) derived from natural, synthetic, and industrial sources. A wide array of technologies has been conceived, ranging from amendments that immobilize P in soils and manures to filters that remove P from agricultural drainage waters. This collection of papers summarizes theoretical modeling, laboratory, field, and economic assessments of P removal technologies. Modeling and laboratory studies demonstrate the importance of evaluating P removal technologies under controlled conditions before field deployment, and field studies highlight several challenges to P removal that may be unanticipated in the laboratory, including limited P retention by filters during storms, as well as clogging of filters due to sedimentation. Despite the potential of P removal technologies to improve water quality, gaps in our knowledge remain, and additional studies are needed to characterize the long-term performance of these technologies, as well as to more fully understand their costs and benefits in the context of whole-farm- and watershed-scale P management.


Subject(s)
Groundwater/chemistry , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Agriculture , Geologic Sediments , Recreation , Waste Disposal, Fluid
12.
J Environ Qual ; 41(3): 636-46, 2012.
Article in English | MEDLINE | ID: mdl-22565245

ABSTRACT

Phosphorus (P) losses from agricultural soils have caused surface water quality impairment in many regions of the world, including The Netherlands. Due to the large amounts of P accumulated in Dutch soils, the generic fertilizer and manure policy will not be sufficient to reach in time the surface water quality standards of the European Water Framework Directive. Additional measures must be considered to further reduce P enrichment of surface waters. One option is to immobilize P in soils or manure or to trap P when it moves through the landscape by using reactive materials with a large capacity to retain P. We characterized and tested two byproducts of the process of purification of deep groundwater for drinking water that could be used as reactive materials: iron sludge and iron-coated sand. Both materials contain low amounts of inorganic contaminants, which also have a low (bio)availability, and bound a large amount of P. We could describe sorption of P to the iron sludge in batch experiments well with the kinetic Freundlich equation (Q = × t (m) × C(n)). Kinetics had a large influence on P sorption in batch and column experiments and should be taken into account when iron-containing materials are tested for their capability to immobilize or trap P. A negative aspect of the iron sludge is its low hydraulic conductivity; even when mixed with pure sand to a mixture containing 20% sludge, the conductivity was very low, and only 10% sludge may be needed before application is possible in filters or barriers for removing P from groundwater. Due to its much higher hydraulic conductivity, iron-coated sand has greater potential for use under field conditions. Immobilizing P could be an option for using iron sludge as a reactive material.


Subject(s)
Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Agriculture , Iron/chemistry , Sewage/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Water Purification/methods
13.
J Environ Qual ; 41(1): 229-41, 2012.
Article in English | MEDLINE | ID: mdl-22218191

ABSTRACT

In flat areas, transport of dissolved nutrients by water through the soil matrix to groundwater and drains is assumed to be the dominant pathway for nutrient losses to ground- and surface waters. However, long-term data on the losses of nutrients to surface water and the contribution of various pathways is limited. We studied nutrient losses and pathways on a heavy clay soil in a fluvial plain in The Netherlands during a 5-yr period. Average annual nitrogen (N) and phosphorus (P) losses to surface water were 15.1 and 3.0 kg ha(-1) yr(-1), respectively. Losses were dominated by particulate N (50%) and P (70%) forms. Rapid discharge through trenches was the dominant pathway (60-90%) for water and nutrient transport. The contribution of pipe drains to the total discharge of water and nutrients was strongly related to the length of the dry period in the preceding summer. This relationship can be explained by the very low conductivity of the soil matrix and the formation of shrinkage cracks during summer. Losses of dissolved reactive P through pipe drains appear to be dominated by preferential flow based on the low dissolved reactive P concentration in the soil matrix at this depth. Rainfall occurring after manure application played an important role with respect to the annual losses of N and P in spring when heavy rainfall occurred within 2 wk after manure application.


Subject(s)
Rivers , Soil/chemistry , Water Movements , Water/chemistry , Animals , Cattle , Dairying , Environmental Monitoring , Lolium/chemistry , Netherlands , Rain , Time Factors , Water Pollutants, Chemical/chemistry
14.
Environ Sci Technol ; 44(4): 1340-6, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20047312

ABSTRACT

Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.


Subject(s)
Metals/analysis , Models, Theoretical , Soil/analysis , Absorption , Benzopyrans/analysis , Humic Substances/analysis , Monte Carlo Method
15.
J Environ Qual ; 38(3): 1126-36, 2009.
Article in English | MEDLINE | ID: mdl-19398510

ABSTRACT

Soils in the Fuyang valley (Zhejiang province, southeast China) have been contaminated by heavy metals. Since rice (Oryza sativa L.) is the dominant crop in the valley and because of its tendency to accumulate Cd in its grains, assessment of the human health risk resulting from consumption of locally produced rice is needed. In this study, we used a regression model to predict the average Cd content in rice grains for paddy fields. The multiple linear model for log(Cd) content in rice grains with log(HNO(3)-Cd), pH, log(clay), and log(soil organic matter, SOM) as predictors performed much better (R(2)(adj) = 66.1%) than the model with log(CaCl(2)-Cd) as a single predictor (R(2)(adj) = 28.1%). This can be explained by the sensitivity of CaCl(2)-extracted Cd for changes in redox potential and as a result of the drying of the soil samples in the laboratory. Consequently, the multiple linear model was used to predict the average Cd contents in rice grains for paddy fields, and to estimate the probability that the FAO/WHO standard of 0.2 mg kg(-1) will be exceeded. Eleven blocks had a probability smaller than 10% of exceeding this standard (safe blocks). If a lognormal distribution is assumed, 35 blocks had a probability larger than 90% (blocks at risk). Hence, risk reduction measures should be undertaken for the blocks at risk. For 27 blocks the probability was between 10 and 90%. For these blocks the uncertainty should be reduced via improvement of the regression model and/or increasing the number of sample locations within blocks.


Subject(s)
Cadmium/analysis , Models, Chemical , Oryza/chemistry , Seeds/chemistry , Soil/analysis , China , Food Contamination/analysis , Linear Models , Regression Analysis
16.
J Environ Qual ; 38(2): 751-61, 2009.
Article in English | MEDLINE | ID: mdl-19244497

ABSTRACT

High soil P contents in agricultural soils in the Netherlands cause excessive losses of P to surface waters. The reductions in P application rates in the present manure policy are not sufficient to reach surface water quality standards resulting from the European Water Framework Directive in 2015. Accordingly, additional measures are necessary to reduce P loading to surface water. Greenhouse experiments showed that a rapid reduction in soluble P and readily available soil P can be obtained by zero P application. However, field data confirming these findings are scarce. In 2002 a phytoextraction experiment started on four grasslands sites on sand, peat, and clay soils. The phytoextraction (mining) plots receive no P and 300 kg N ha(-1) yr(-1) and the grass is removed by mowing. The experiment showed that zero P application, over a period of 5 yr, led to a strong (30-90%) reduction in P concentrations in soil solution in the upper soil layer (0-0.05 m). The reduction in concentrations declined with depth. Mining also resulted in a decline in P pools in the soil solid phase. The largest decline (10-60%) was found in weakly bound P pools (water extractable P; P(w), and ammonium lactate extractable P; P-AL), whereas reductions in more strongly bound P forms were relatively small. It may be concluded that phytoextraction appears an effective method of reducing soil P concentrations in the uppermost soil layers in a couple of years and prolonged mining may thus be effective in reducing leaching and runoff of P.


Subject(s)
Phosphorus/metabolism , Poaceae/metabolism , Soil/analysis , Water Pollution, Chemical/prevention & control , Agriculture , Biodegradation, Environmental , Fertilizers , Phosphorus/isolation & purification
17.
Environ Sci Technol ; 42(4): 1123-30, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18351082

ABSTRACT

The use of the [S,S]-isomer of EDDS to enhance phytoextraction has been proposed for the remediation of heavy metal contaminated soils. Speciation of metals in soil solution in the presence of EDDS and dissolved organic matter (DOM) received, however, almost no attention, whereas metal speciation plays an important role in relation to uptake of metals by plants. We investigated the influence of EDDS on speciation of dissolved metals in batch extraction experiments using fourfield-contaminated soils with pH varying between 4.7 and 7.2. Free metal concentrations were determined with the Donnan membrane technique, and compared with results obtained with the chemical speciation program ECOSAT and the NICA-Donnan model using a multicomponent approach. Addition of EDDS increased total metal concentrations in our soil extracts by a factor between 1.1 and 32 (Al), 2.1-48 (Cu), 1.1-109 (Fe), 1.1-5.5 (Ni), and 1.3-17 (Zn). In general, Al, Cu, Fe, and Zn had the largest total concentrations in the EDDS-treated extracts, but the contribution of these metals to the sum of total metal concentrations varied significantly between our soils. Free metal concentrations varied between 7.0 and 8.9 (pCd2+), 3.9-9.9 (pCu2+), 6.3-10.2 (pNi2+), and 5.2-7.0 (pZn2+). Addition of EDDS decreased free metal concentrations by a factor between 1.4 and 1.9 (Cd), 3.4-216 (Cu), 1.3-186 (Ni), and 1.3-3.3 (Zn). Model predictions of free metal concentrations were very good, and predicted values were mostly within 1 order of magnitude difference from the measured concentrations. A multicomponent approach had to be used in our model calculations, because competition between Fe and other metals for binding with EDDS was important. This was done by including the solubility of metal oxides in our model calculations. Multicomponent models can be used in chelant-assisted phytoextraction experiments to predict the speciation of dissolved metals and to increase the understanding of metal uptake by plants.


Subject(s)
Ethylenediamines/chemistry , Metals/chemistry , Models, Theoretical , Soil Pollutants/chemistry , Succinates/chemistry
18.
Environ Geochem Health ; 29(3): 221-35, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17431801

ABSTRACT

For enhanced phytoextraction, mobilization of heavy metals (HMs) from the soil solid phase to soil pore water is an important process. A pot incubation experiment mimicking field conditions was conducted to investigate the performance of three soil additives in mobilizing HMs from contaminated paddy soil (Gleyi-Stagnic Anthrosol): the [S, S]-isomer of ethylenediamine disuccinate (EDDS) with application rates of 2.3, 4.3, and 11.8 mmol kg(-1) of soil, ethylenediamine tetraacetate (EDTA; 1.4, 3.8, and 7.5 mmol kg(-1)), and elemental sulfur (100, 200, and 400 mmol kg(-1)). Temporal changes in soil pore water HM and dissolved organic carbon concentrations and pH were monitored for a period of 119 days. EDDS was the most effective additive in mobilizing soil Cu. However, EDDS was only effective during the first 24 to 52 days, and was readily biodegraded with a half-life of 4.1 to 8.7 days. The effectiveness of EDDS decreased at the highest application rate, most probably as a result of depletion of the readily desorbable Cu pool in soil. EDTA increased the concentrations of Cu, Pb, Zn, and Cd in the soil pore water, and remained effective during the whole incubation period due to its persistence. The highest rate of sulfur application led to a decrease in pH to around 4. This increased the pore water HM concentrations, especially those of Zn and Cd. Concentrations of HMs in the soil pore water can be regulated to a large extent by choosing the proper application rate of EDDS, EDTA, or sulfur. Hence, a preliminary work such as our pot experiment in combination with further plant experiments (not included in this study) will provide a good tool to evaluate the applicability of different soil additives for enhanced phytoextraction of a specific soil.


Subject(s)
Edetic Acid/chemistry , Environmental Restoration and Remediation/methods , Ethylenediamines/chemistry , Metals, Heavy/chemistry , Soil Pollutants/chemistry , Succinates/chemistry , Sulfur/chemistry , Carbon/chemistry , Hydrogen-Ion Concentration , Oryza
SELECTION OF CITATIONS
SEARCH DETAIL
...