Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 859(Pt 1): 160132, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36400291

ABSTRACT

The present study employed data collected during the Mycosands survey to investigate the environmental factors influencing yeasts and molds distribution along European shores applying a species distribution modelling approach. Occurrence data were compared to climatic datasets (temperature, precipitation, and solar radiation), soil datasets (chemical and physical properties), and water datasets (temperature, salinity, and chlorophyll-a concentration) downloaded from web databases. Analyses were performed by MaxEnt software. Results suggested a different probability of distribution of yeasts and molds along European shores. Yeasts seem to tolerate low temperatures better during winter than molds and this reflects a higher suitability for the Northern European coasts. This difference is more evident considering suitability in waters. Both distributions of molds and yeasts are influenced by basic soil pH, probably because acidic soils are more favorable to bacterial growth. Soils with high nitrogen concentrations are not suitable for fungal growth, which, in contrast, are optimal for plant growth, favored by this environment. Finally, molds show affinity with soil rich in nickel and yeasts with soils rich in cadmium resulting in a distribution mainly at the mouths of European rivers or lagoons, where these metals accumulate in river sediments.


Subject(s)
Rivers , Soil Pollutants , Rivers/chemistry , Soil/chemistry , Cadmium/analysis , Soil Pollutants/analysis , Metals/analysis , Yeasts , Environmental Monitoring
2.
Sci Total Environ ; 781: 146598, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33812107

ABSTRACT

The goal of most studies published on sand contaminants is to gather and discuss knowledge to avoid faecal contamination of water by run-offs and tide-retractions. Other life forms in the sand, however, are seldom studied but always pointed out as relevant. The Mycosands initiative was created to generate data on fungi in beach sands and waters, of both coastal and freshwater inland bathing sites. A team of medical mycologists and water quality specialists explored the sand culturable mycobiota of 91 bathing sites, and water of 67 of these, spanning from the Atlantic to the Eastern Mediterranean coasts, including the Italian lakes and the Adriatic, Baltic, and Black Seas. Sydney (Australia) was also included in the study. Thirteen countries took part in the initiative. The present study considered several fungal parameters (all fungi, several species of the genus Aspergillus and Candida and the genera themselves, plus other yeasts, allergenic fungi, dematiaceous fungi and dermatophytes). The study considered four variables that the team expected would influence the results of the analytical parameters, such as coast or inland location, urban and non-urban sites, period of the year, geographical proximity and type of sediment. The genera most frequently found were Aspergillus spp., Candida spp., Fusarium spp. and Cryptococcus spp. both in sand and in water. A site-blind median was found to be 89 Colony-Forming Units (CFU) of fungi per gram of sand in coastal and inland freshwaters, with variability between 0 and 6400 CFU/g. For freshwater sites, that number was 201.7 CFU/g (0, 6400 CFU/g (p = 0.01)) and for coastal sites was 76.7 CFU/g (0, 3497.5 CFU/g). For coastal waters and all waters, the median was 0 CFU/ml (0, 1592 CFU/ml) and for freshwaters 6.7 (0, 310.0) CFU/ml (p < 0.001). The results advocate that beaches should be monitored for fungi for safer use and better management.


Subject(s)
Bathing Beaches , Sand , Australia , Black Sea , Fungi , Humans , Italy , Water Microbiology
3.
Emerg Infect Dis ; 7(6): 970-6, 2001.
Article in English | MEDLINE | ID: mdl-11747723

ABSTRACT

Hepatitis E virus (HEV), a major cause of viral hepatitis in much of the developing world, has recently been detected in swine in North America and Asia, raising concern about potential for zoonotic transmission. To investigate if HEV is commonly present in swine in the Netherlands, pooled stool samples from 115 swine farms and nine individual pigs with diarrhea were assayed by reverse transcription-polymerase chain reaction (RT-PCR) amplification. HEV RNA was detected by RT-PCR and hybridization in 25 (22%) of the pooled specimens, but in none of the individual samples. RT-PCR amplification products of open reading frames 1 and 2 were sequenced, and the results were compared with published sequences of HEV genotypes from humans and swine. HEV strains from swine in the Netherlands were clustered in at least two groups, together with European and American isolates from swine and humans. Our data show that HEV in swine in the Netherlands are genetically closely related to HEV isolates from humans. Although zoonotic transmission has not been proven, these findings suggest that swine may be reservoir hosts of HEV.


Subject(s)
Hepatitis E/veterinary , Swine Diseases/virology , Animals , Cloning, Molecular , Hepatitis E/epidemiology , Hepatitis E/virology , Hepatitis E virus/classification , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Humans , Netherlands/epidemiology , Phylogeny , RNA, Viral/analysis , Swine , Swine Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...