Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acute Med ; 20(1): 4-14, 2021.
Article in English | MEDLINE | ID: mdl-33749689

ABSTRACT

BACKGROUND: A recent systematic review recommends against the use of any of the current COVID-19 prediction models in clinical practice. To enable clinicians to appropriately profile and treat suspected COVID-19 patients at the emergency department (ED), externally validated models that predict poor outcome are desperately needed. OBJECTIVE: Our aims were to identify predictors of poor outcome, defined as mortality or ICU admission within 30 days, in patients presenting to the ED with a clinical suspicion of COVID-19, and to develop and externally validate a prediction model for poor outcome. METHODS: In this prospective, multi-center study, we enrolled suspected COVID-19 patients presenting at the EDs of two hospitals in the Netherlands. We used backward logistic regression to develop a prediction model. We used the area under the curve (AUC), Brier score and pseudo-R2 to assess model performance. The model was externally validated in an Italian cohort. RESULTS: We included 1193 patients between March 12 and May 27 2020, of whom 196 (16.4%) had a poor outcome. We identified 10 predictors of poor outcome: current malignancy (OR 2.774; 95%CI 1.682-4.576), systolic blood pressure (OR 0.981; 95%CI 0.964-0.998), heart rate (OR 1.001; 95%CI 0.97-1.028), respiratory rate (OR 1.078; 95%CI 1.046-1.111), oxygen saturation (OR 0.899; 95%CI 0.850-0.952), body temperature (OR 0.505; 95%CI 0.359-0.710), serum urea (OR 1.404; 95%CI 1.198-1.645), C-reactive protein (OR 1.013; 95%CI 1.001-1.024), lactate dehydrogenase (OR 1.007; 95%CI 1.002-1.013) and SARS-CoV-2 PCR result (OR 2.456; 95%CI 1.526-3.953). The AUC was 0.86 (95%CI 0.83-0.89), with a Brier score of 0.32 and, and R2 of 0.41. The AUC in the external validation in 500 patients was 0.70 (95%CI 0.65-0.75). CONCLUSION: The COVERED risk score showed excellent discriminatory ability, also in an external validation. It may aid clinical decision making, and improve triage at the ED in health care environments with high patient throughputs.


Subject(s)
COVID-19 , Emergency Service, Hospital , Humans , Multicenter Studies as Topic , Netherlands , Prognosis , Prospective Studies , Retrospective Studies , SARS-CoV-2
2.
Clin Transl Gastroenterol ; 9(5): 155, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29799027

ABSTRACT

BACKGROUND: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. METHODS: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. RESULTS: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 µmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). CONCLUSIONS: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Butyrates/administration & dosage , Glucose/metabolism , Insulin Resistance/physiology , Metabolic Syndrome/metabolism , Thinness/metabolism , Administration, Oral , Adult , Bile Acids and Salts/metabolism , Energy Metabolism , Fatty Acids, Volatile/blood , Fatty Acids, Volatile/metabolism , Feces/chemistry , Fluorodeoxyglucose F18 , Gastrointestinal Microbiome , Humans , Liver/metabolism , Male , Metabolic Syndrome/drug therapy , Pilot Projects , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Young Adult
3.
Neth J Med ; 75(3): 117-121, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28469048

ABSTRACT

Lenalidomide has a central role in the treatment of multiple myeloma and results in improved survival. As with other chemotherapeutics, it can cause several serious side effects. This is the first reported case of hepatitis E during lenalidomide treatment for multiple myeloma in complete remission. In case of liver chemistry abnormalities during lenalidomide treatment, the differential diagnosis should include hepatitis E infection.


Subject(s)
Hepatitis E/chemically induced , Immunologic Factors/adverse effects , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , Aged , Female , Humans , Lenalidomide , Liver Function Tests , Maintenance Chemotherapy , Thalidomide/adverse effects , Transaminases/blood
4.
Int J Obes (Lond) ; 39(12): 1703-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26155920

ABSTRACT

BACKGROUND/OBJECTIVES: Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. SUBJECTS/METHODS: We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. RESULTS: Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 µmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 µmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). CONCLUSIONS: Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.


Subject(s)
Adipose Tissue, White/metabolism , Blood Glucose/metabolism , Hypoglycemic Agents/blood , Insulin Resistance , Insulin/blood , Liver/metabolism , Adult , Body Mass Index , Fasting/metabolism , Glucose Clamp Technique , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Male , Middle Aged , Muscle, Skeletal/metabolism , Netherlands/epidemiology , Obesity , Predictive Value of Tests , Reference Values
5.
Best Pract Res Clin Gastroenterol ; 27(1): 127-37, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23768558

ABSTRACT

Recent studies have suggested an association between intestinal microbiota composition and human disease, however causality remains to be proven. With hindsight, the application of fecal transplantation (FMT) does indeed suggest a causal relation between interfering with gut microbiota composition and a resultant cure of several disease states. In this review, we aim to show the available evidence regarding the involvement of intestinal microbiota and human (autoimmune) disease. Moreover, we refer to (mostly case report) studies showing beneficial or adverse effects of fecal transplantation on clinical outcomes in some of these disease states. If these findings can be substantiated in larger randomized controlled double blind trials also implementing gut microbiota composition before and after intervention, fecal transplantation might provide us with novel insights into causally related intestinal microbiota, that might be serve as future diagnostic and treatment targets in human disease.


Subject(s)
Biological Therapy/methods , Feces/microbiology , Gastrointestinal Diseases/therapy , Gastrointestinal Tract/microbiology , Host-Pathogen Interactions/physiology , Metagenome/physiology , Humans , Probiotics
6.
Clin Microbiol Infect ; 19(4): 331-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23452186

ABSTRACT

Whereas the association between intestinal microorganisms and health has been widely accepted in the area of infectious disease, recent advances have now implied a role for the intestinal microbiota in human energy balance. In fact, numerous studies support an intricate relationship between the intestinal microbiota and obesity, as well as subsequent insulin resistance and non-alcoholic fatty liver disease. Intestinal microorganisms also seem to be involved in haemostatic tone and atherogenesis. However, as most of the findings stem from observational data, intervention studies in humans using interventions selectively aimed at altering the composition and activity of the intestinal microbiota are crucial to prove causality. If substantiated, this could open the arena for modulation of the intestinal microbiota as a future target in obesity-associated disease, both as a diagnostic test for personalized algorithms and for selective therapeutic strategies.


Subject(s)
Atherosclerosis/etiology , Fatty Liver/etiology , Gastrointestinal Tract/microbiology , Metagenome , Obesity/etiology , Humans , Non-alcoholic Fatty Liver Disease
7.
Diabetes Obes Metab ; 14(2): 112-20, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21812894

ABSTRACT

Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates further studies on modifiable causative factors and novel treatment options. The gut microbiota has emerged as an important contributor to the obesity--and T2DM--epidemic proposed to act by increasing energy harvest from the diet. Although obesity is associated with substantial changes in the composition and metabolic function of the gut microbiota, the pathophysiological processes remain only partly understood. In this review we will describe the development of the adult human microbiome and discuss how the composition of the gut microbiota changes in response to modulating factors. The influence of short-chain fatty acids, bile acids, prebiotics, probiotics, antibiotics and microbial transplantation is discussed from studies using animal and human models. Ultimately, we aim to translate these findings into therapeutic pathways for obesity and T2DM in humans.


Subject(s)
Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/microbiology , Fatty Acids, Volatile/metabolism , Gastrointestinal Tract/microbiology , Metagenome , Obesity/microbiology , Animals , Anti-Bacterial Agents/therapeutic use , Bariatric Surgery , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Diet , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/physiopathology , Humans , Mice , Obesity/metabolism , Obesity/physiopathology , Prebiotics , Probiotics/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...