Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 17(1): 80-97, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22269865

ABSTRACT

Lilium candidum L. extract (LE) is well known in folk medicine for the treatment of burns, ulcers, inflammations and for healing wounds. This work aims to clarify whether the genotoxic potential of the radiomimetic antibiotic zeocin (Zeo) could be modulated by LE. Our results indicate that LE exerts no cytotoxic, DNA-damaging and clastogenic activity in in Chlamydomonas reinhardtii, Pisum sativum L. and Hordeum vulgare L. test systems over a broad concentration range. Weak but statistically significant clastogenic effects due to the induction of micronuclei and chromosome aberrations have been observed in H. vulgare L. after treatment with 200 and 300 µg/mL LE. To discriminate protective from adverse action of LE different experimental designs have been used. Our results demonstrate that the treatment with mixtures of LE and Zeo causes an increase in the level of DNA damage, micronuclei and "metaphases with chromatid aberrations" (MwA). Clear evidence has been also obtained indicating that pretreatment with LE given 4 h before the treatment with Zeo accelerates the rejoining kinetics of Zeo-induced DNA damage in P. sativum L. and C. reinhardtii, and can decrease clastogenic effect of Zeo measured as frequencies of micronuclei and MwA in H. vulgare L. Here, we show for the first time that LE can modulate the genotoxic effects of zeocin. The molecular mode of action strongly depends on the experimental design and varies from synergistic to protective effect (adaptive response-AR). Our results also revealed that LE-induced AR to zeocin involves up-regulation of DSB rejoining in C. reinhardtii and P. sativum L. cells.


Subject(s)
Anti-Bacterial Agents/toxicity , Bleomycin/toxicity , Lilium/chemistry , Mutagens/toxicity , Plant Extracts/pharmacology , Chlamydomonas reinhardtii/drug effects , DNA Damage/drug effects , Hordeum/drug effects , Meristem/drug effects , Mitotic Index , Mutagenicity Tests , Pisum sativum/drug effects
2.
Phytother Res ; 24(1): 90-5, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19585477

ABSTRACT

The potential genotoxicity and antigenotoxicity of non-photoactivated hypericin was investigated in five experimental models. Hypericin was non-mutagenic in the Ames assay, with and without metabolic activation. It did not exert a protective effect against mutagenicity induced by 9-aminoacridine. In a yeast (Saccharomyces cerevisiae) assay, hypericin did not increase the frequency of mitotic crossovers or total aberrants at the ade(2) locus, the number of convertants at the trp5 locus, or the number of revertants at the ilv1 locus. In combined application with 4-nitroquinoline-1-oxide, it significantly enhanced the number of revertants at the ilv1 locus at the highest concentration used. Hypericin was not mutagenic in the alga Chlamydomonas reinhardtii. However, in combined application with methyl methane sulfonate, toxicity and mutagenicity were slightly reduced. In a chromosome aberration assay using three mammalian cell lines, hypericin did not alter the frequency of structural chromosome aberrations, and in the DPPH radical scavenging assay, it did not exert any antioxidant effects.


Subject(s)
Antimutagenic Agents/pharmacology , DNA Damage , Perylene/analogs & derivatives , Animals , Anthracenes , Cell Line, Tumor , Chlamydomonas reinhardtii/drug effects , Chromosome Aberrations/chemically induced , Cricetinae , Humans , Mutagenicity Tests , Perylene/pharmacology , Saccharomyces cerevisiae/drug effects
3.
Neuro Endocrinol Lett ; 29(5): 649-52, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18987588

ABSTRACT

OBJECTIVES: The purpose of this study was to assess whether a methanol extract isolated from the greater celandine Chelidonium majus L. (CME) had antioxidant effect and was able to inhibit proliferation and to induce apoptosis in leukemia cells in vitro. METHODS: The potential antioxidant activity of CME was proved by the 1,1-diphenyl- 2-picrylhydrazyl (DPPH) radical scavenging assay. The cytotoxicity of CME was measured by the cell growth inhibition assay using murine leukemia L1210 cell line and human promyelocytic HL-60 leukemia cells. Apoptosis-inducing effect was determined by fluorescence microscopy (chromatin condensation and nuclear DNA fragmentation). RESULTS: In the DPPH assay CME acted as a scavenger of DPPH free radical. The results on antiproliferative properties assessment clearly demonstrated that CME had a cytotoxic effect towards both leukemia cell lines in a dose-dependent manner. In addition, the human promyelocytic HL-60 cells were more sensitive to CME treatment than the L1210 cells. CONCLUSIONS: We concluded that the extract of C. majus L. had a strong antioxidant potential and exerted the antiproliferative activity via apoptosis on leukemia cells. CME due to the presence of the isoquinoline alkaloids and the flavonoid components may play an important role in both cancer chemoprevention through its antioxidant activity and modern cancer chemotherapy as cytotoxic and apoptosis-inducing agent.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Chelidonium/chemistry , Leukemia/drug therapy , Animals , Biphenyl Compounds , Dose-Response Relationship, Drug , Free Radical Scavengers , HL-60 Cells , Humans , Leukemia/pathology , Leukemia L1210/drug therapy , Leukemia L1210/pathology , Mice , Microscopy, Fluorescence , Picrates/chemistry , Plant Extracts/pharmacology
4.
Neuro Endocrinol Lett ; 27 Suppl 2: 53-6, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17159779

ABSTRACT

OBJECTIVES: The purpose of this study was to determine whether the extract isolated from the artichoke Cynara cardunculus L. (ECC) had antimutagenic effect and was able to enhance the therapeutic effect of cytostatic drug cis-platinum (cis-Pt). METHODS: The potential antimutagenic activity of ECC was assayed by a test on sex-linked recessive lethal mutations detection in Drosophila melanogaster males treated with ethylmethane sulfonate (EMS). The possible enhancement of cytostatic/cytotoxic effect of cis-Pt by ECC was evaluated in the cell revitalization assay by measuring cell viability via Trypan blue exclusive assay using mouse leukemia cells L1210. RESULTS: EMS was both toxic and genotoxic in D. melanogaster males. It statistically significantly increased the frequency of sex-linked recessive lethal mutations in comparison to the negative control. Furthermore, ECC statistically significantly reduced the genotoxic effect of EMS. It acted in a desmutagenic manner via EMS inactivation. In the cell revitalization assay, ECC enhanced the cytotoxic/cytostatic effect of cis-Pt. The therapeutic potential of ECC was established on the basis of statistically significantly lowered recovery of cis-Pt pre-treated mouse leukemia cells in the presence of ECC. CONCLUSIONS: The results imply that the extract isolated from artichoke C. cardunculus L. has marked beneficial activities antimutagenic and therapeutic effect enhancing) and its potential biomedical application in the combination therapy of cancer and some neurodegenerative diseases may be suggested.


Subject(s)
Cisplatin/pharmacology , Cynara scolymus/chemistry , Plant Extracts/pharmacology , Animals , Antimutagenic Agents/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drosophila melanogaster , Drug Synergism , Female , Male , Mice , Mutagenicity Tests , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...