Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 90: 102596, 2020 May.
Article in English | MEDLINE | ID: mdl-32479391

ABSTRACT

Abiotic factors' effects on species are now well-studied, yet they are still often difficult to predict, especially for strongly interacting species. If these altered abiotic factors and species interactions occur as discrete events in time, such complications may occur because of the events' relative timing. One such discrete abiotic factor is the short-duration, large magnitude increase in temperature called a heat shock. This study investigates how the timing of heat shocks affects the successful attack and reproduction of a parasitoid wasp (Aphidius ervi) attacking its host, the pea aphid (Acyrthosiphon pisum). We tested three relative timings: 1) heat shock before the wasp attacks hosts, 2) heat shock while the wasp is foraging, and 3) heat shock after the wasp has attacked hosts. In each scenario we compared wasp mummy production (pupal stage) with and without a heat shock. Our results showed that a heat shock had the largest effect when it occurred while wasps actively foraged, with fewer mummies produced when exposed to a heat shock compared to the no heat shock control. Follow-up behavioral tests suggest this was caused by wasps becoming inactive during heat shocks. In contrast, when heat shocks were applied three days before or after foraging, we found no difference in mummy production between the heat shock treatment and no heat shock control. These results show the potential importance of timing when considering the ramifications of an altered abiotic factor, especially with relatively discrete abiotic events and interactions.


Subject(s)
Aphids/physiology , Aphids/parasitology , Heat-Shock Response/physiology , Host-Parasite Interactions , Wasps/physiology , Animals , Behavior, Animal , Female , Male
2.
PLoS One ; 13(1): e0190763, 2018.
Article in English | MEDLINE | ID: mdl-29293663

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0180729.].

3.
PLoS One ; 12(7): e0180729, 2017.
Article in English | MEDLINE | ID: mdl-28700614

ABSTRACT

Insects use endogenous mechanisms and infection with protective symbionts to thwart attacks from natural enemies. Defenses that target specific enemies, however, potentially mediate competition between rivals and thereby impact community composition. Following its introduction to North America to control pea aphids (Acyrthosiphon pisum), the parasitoid Aphidius ervi competitively displaced other parasitoids, except for the native Praon pequodorum. The pea aphid exhibits tremendous clonal variation in resistance to A. ervi, primarily through infection with the heritable bacterial symbiont Hamiltonella defensa, although some symbiont-free aphid genotypes encode endogenous resistance. Interestingly, H. defensa strains and aphid genotypes that protect against A. ervi, provide no protection against the closely related, P. pequodorum. Given the specificity of aphid defenses, we hypothesized that aphid resistance traits may contribute to the continued persistence of P. pequodorum. We conducted multiparasitism assays to determine whether aphid resistance traits mediate internal competition between these two solitary parasitoid species, but found this was not the case; P. pequodorum was the successful internal competitor across lines varying in susceptibility to A. ervi. Next, to determine whether resistance traits influence competitive interactions resulting in the stable persistence of P. pequodorum, we established replicated cages varying in the proportion of resistant aphids and recorded successful parasitism for each wasp species over time. As expected, A. ervi outcompeted P. pequodorum in cages containing only susceptible aphids. However, P. pequodorum not only persisted, but was the superior competitor in populations containing any proportion (20-100%) of resistant aphids (20-100%). Smaller scale, better replicated competition cage studies corroborated this finding, and no-competition and behavioral assays provide insight into the processes mediating competition. Genetic variation, including that acquired via infection with protective symbionts, may provide a supply of hosts susceptible only to particular enemies, mediating competition with effects on community richness and stability.


Subject(s)
Aphids/parasitology , Competitive Behavior , Disease Resistance/immunology , Parasites/physiology , Quantitative Trait, Heritable , Symbiosis/physiology , Analysis of Variance , Animals , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...