Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Phys Chem Chem Phys ; 10(16): 2180-8, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18404224

ABSTRACT

The ultrafast internal conversion dynamics of 12'-apo-beta-carotenoic-12'-acid (12'CA), 10'-apo-beta-carotenoic-10'-acid (10'CA) and 8'-apo-beta-carotenoic-8'-acid (8'CA) have been investigated by femtosecond pump-probe spectroscopy. The three apocarotenoic acids were excited to the S(2) state with different excess energies. Time constants tau(1) for the IC process S(1)/ICT --> S(0) were measured by probing the dynamics at 390 nm (S(0) --> S(2)), 575 nm (S(1)/ICT --> S(n)), 850, 860 and 890 nm (S(2) --> S(n) and S(1)/ICT --> S(0)). In nonpolar solvents, the observed reduction of the tau(1) values with increasing conjugation length of the acids is consistent with a reduction of the energy gap between the S(1)/ICT and S(0) states. The values are in good agreement with those of the corresponding apocarotenals studied previously in our groups. In polar solvents, a pronounced reduction of tau(1) values was observed for 12'CA, however the behavior was different from that observed for the respective aldehyde 12'-apo-beta-caroten-12'-al studied previously: First, the degree of tau(1) reduction in methanol was milder for 12'CA (218 --> 55 ps) than for 12'-apo-beta-caroten-12'-al (220 --> 8 ps). Secondly, for 12'CA the plateau of solvent independent tau(1) values extended further into the mid-polar range (up to 0.5 on the Deltaf scale) than previously observed for the 12'-aldehyde. For 10'CA the polarity effect on the tau(1) values was weaker ( approximately 71 ps in n-hexane and 34 ps in methanol) and for 8'CA it disappeared completely ( approximately 24 ps averaged over all solvents). The polarity-induced reduction of tau(1) is likely due to the stabilization of an intramolecular charge transfer state in polar solvents. This S(1)/ICT state is also responsible for the stimulated emission in the near IR, which has been observed in this specific class of carotenoids with a terminal carboxyl group for the first time. The occurrence of stimulated emission in the near IR region is also consistent with the steady-state fluorescence spectra which are reported along with the absorption spectra of these species. Possible reasons for the different behavior of the apocarotenoic acids compared to the respective aldehydes are discussed.

3.
J Phys Chem A ; 111(25): 5370-81, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17550237

ABSTRACT

The ultrafast excited-state dynamics of two carbonyl-containing carotenoids, 12'-apo-beta-caroten-12'-al and 8'-apo-beta-caroten-8'-al, have been investigated by transient absorption spectroscopy in a systematic variation of solvent polarity and temperature. In most of the experiments, 12'-apo-beta-caroten-12'-al was excited at 430 nm and 8'-apo-beta-caroten-8'-al at 445 or 450 nm via the S0 --> S2 (11Ag- --> 11Bu+) transition. The excited-state dynamics were then probed at 860 nm for 12'-apo-beta-caroten-12'-al and at 890 or 900 nm for 8'-apo-beta-caroten-8'-al. The temporal evolution of all transient signals measured in this work can be characterized by an ultrafast decay of the S2 --> SN absorption at early times followed by the formation of a stimulated emission (SE) signal, which subsequently decays on a much slower time scale. We assign the SE signal to a low-lying electronic state of the apocarotenals with intramolecular charge-transfer character (ICT --> S0). This is the first time that the involvement of an ICT state has been detected in the excited-state dynamics of a carbonyl carotenoid in nonpolar solvents such as n-hexane or i-octane. The amplitude ratio of ICT-stimulated emission to S2 absorption was weaker in nonpolar solvents than in polar solvents. We interpret the results in terms of a kinetic model, where the S1 and ICT states are populated from S2 through an ultrafast excited-state branching reaction (tau2 < 120 fs). Delayed formation of a part of the stimulated emission is due to the transition S1 --> ICT (tau3 = 0.5-4.1 ps, depending on the solvent), which possibly involves a slower backward reaction ICT --> S1. Determinations of tau1 were carried out for a large set of solvents. Especially in 12'-apo-beta-caroten-12'-al, the final SE decay, assigned to the nonradiative relaxation ICT --> S0, was strongly dependent on solvent polarity, varying from tau1 = 200 ps in n-hexane to 6.6 ps in methanol. In the case of 8'-apo-beta-caroten-8'-al, corresponding values were 24.8 and 7.6 ps, respectively. This indicates an increasing stabilization of the ICT state with increasing solvent polarity, resulting in a decreasing ICT-S0 energy gap. Tuning the pump wavelength from the blue wing to the maximum of the S0 --> S2 absorption band resulted in no change of tau1 in acetone and methanol. Additional measurements in methanol after excitation in the red edge of the S0 --> S2 band (480-525 nm) also show an almost constant tau1 with only a 10% reduction at the largest probe wavelengths. The temperature dependence of the tau1 value of 12'-apo-beta-caroten-12'-al was well described by Arrhenius-type behavior. The extracted apparent activation energies for the ICT --> S0 transitions were in general small (on the order of a few times RT), which is in the range expected for a radiationless process.

4.
Phys Chem Chem Phys ; 7(14): 2793-803, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16189595

ABSTRACT

The ultrafast internal conversion (IC) dynamics of seven C(40) carotenoids have been investigated at room temperature in a variety of solvents using two-color transient lens (TL) pump-probe spectroscopy. We provide comprehensive data sets for the carbonyl carotenoids canthaxanthin, astaxanthin, and-for the first time-echinenone, as well as new data for lycopene, beta-carotene, (3R,3'R)-zeaxanthin and (3R,3'R,6'R)-lutein in solvents which have not yet been investigated in the literature. Measurements were carried out to determine, how the IC processes are influenced by the conjugation length of the carotenoids, additional substituents and the polarity of the solvent. TL signals were recorded at 800 nm following excitation into the high energy edge of the carotenoid S2 band at 400 nm. For the S2 lifetime solvent-independent upper limits on the order of 100-200 fs are estimated for all carotenoids studied. The S1 lifetimes are in the picosecond range and increase systematically with decreasing conjugation length. For instance, in the sequence canthaxanthin/echinenone/beta-carotene (13/12/11 double bonds) one finds tau1 approximately 5, 7.7 and 9 ps for the S1-->S0 IC process, respectively. Hydroxyl groups not attached to the conjugated system have no apparent influence on tau1, as observed for canthaxanthin/astaxanthin (tau1 approximately 5 ps in both cases). For all carotenoids studied, tau1 is found to be insensitive to the solvent polarity. This is particularly interesting in the case of echinenone, canthaxanthin and astaxanthin, because earlier measurements for other carbonyl carotenoids like, e.g., peridinin partly showed dramatic differences. The likely presence of an intramolecular charge transfer state in the excited state manifold of C40 carbonyl carotenoids, which is stabilized in polar solvents, has obviously no influence on the measured tau1.


Subject(s)
Antioxidants/chemistry , Carotenoids/chemistry , Microscopy, Confocal/methods , Canthaxanthin/chemistry , Lenses , Lutein/chemistry , Lycopene , Microscopy, Confocal/instrumentation , Solvents/chemistry , Time Factors , Xanthophylls , Zeaxanthins , beta Carotene/analogs & derivatives , beta Carotene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...