Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474065

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders globally and leads to an excessive loss of dopaminergic neurons in the substantia nigra of the brain. Circulating cell-free DNA (ccf-DNA) are double-stranded DNA fragments of different sizes and origins that are released into the serum and cerebrospinal fluid (CSF) due to cell death (i.e., necrosis and apoptosis) or are actively released by viable cells via exocytosis and NETosis. Using droplet digital polymerase chain reaction (ddPCR), we comprehensively analyzed and distinguished circulating cell-free mitochondrial DNA (ccf mtDNA) and circulating cell-free nuclear DNA (ccfDNA) in the serum and CSF of PD and control patients. The quantitative analysis of serum ccf-DNA in PD patients demonstrated a significant increase in ccf mtDNA and ccfDNA compared to that in healthy control patients and a significantly higher copy of ccf mtDNA when compared to ccfDNA. Next, the serum ccf mtDNA levels significantly increased in male PD patients compared to those in healthy male controls. Furthermore, CSF ccf mtDNA in PD patients increased significantly compared to ccfDNA, and ccf mtDNA decreased in PD patients more than it did in healthy controls. These decreases were not statistically significant but were in agreement with previous data. Interestingly, ccf mtDNA increased in healthy control patients in both serum and CSF as compared to ccfDNA. The small sample size of serum and CSF were the main limitations of this study. To the best of our knowledge, this is the first comprehensive study on serum and CSF of PD patients using ddPCR to indicate the distribution of the copy number of ccf mtDNA as well as ccfDNA. If validated, we suggest that ccf mtDNA has greater potential than ccfDNA to lead the development of novel treatments for PD patients.


Subject(s)
Cell-Free Nucleic Acids , Neurodegenerative Diseases , Parkinson Disease , Humans , Male , Parkinson Disease/metabolism , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism
2.
BMC Plant Biol ; 23(1): 623, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057711

ABSTRACT

Although most of the genes encoding tRNAs in plants are dispersed throughout the genome, a fraction of them form tRNA gene clusters. In Arabidopsis thaliana, the smallest of tRNA clusters on chromosome 5 consists of four tRNA-Cys-GCA genes placed within repeating units of 0.4 kbp. A systematic analysis of the genomic sequences of syntenic regions from various ecotypes of A. thaliana showed that the general structure of the cluster, consisting of a tRNA-Cys pseudogene followed by repeating units containing tRNA-Cys genes, is well conserved. However, there is significant heterogeneity in the number of repeating units between different ecotypes. A unique feature of this cluster is the presence of putative transposable elements (Helitron). In addition, two further tRNA-Cys gene mini-clusters (gene pairs) in A. thaliana were identified. RNA-seq-based evaluation of expression of tRNA-Cys-GCA genes showed a positive signal for 11 out of 13 unique transcripts. An analysis of the conservation of the tRNA-Cys clusters from A. thaliana with the corresponding regions from four other Arabidopsis species suggests a sequence of events that led to the divergence of these regions.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Base Sequence , Genome , RNA, Transfer/genetics , Multigene Family
3.
Front Plant Sci ; 12: 639631, 2021.
Article in English | MEDLINE | ID: mdl-33936130

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.

4.
Front Plant Sci ; 10: 812, 2019.
Article in English | MEDLINE | ID: mdl-31316532

ABSTRACT

Intramolecular G-quadruplexes (G4s) are secondary structures that may form within G-rich stretches of nucleic acids. Although their presence has been associated with genomic instability and mutagenicity, recent reports suggest their involvement in regulation of diverse cellular events, including transcription and translation. The majority of data regarding G4s stems from mammalian and yeast studies, leaving the plant G4s almost unexplored. Using the publicly available Arabidopsis thaliana and Oryza sativa WGS data, we examined the single nucleotide variability of sequences predicted to form G4s (pG4s) structures. We focused our analysis on protein coding transcripts and compared the results to well-characterized Homo sapiens data. We demonstrate that the overall high variability of pG4s is not uniform and differs between gene structural elements. Specifically, plant AUG-containing pG4s, located within 5'UTR/CDS junctions, are abundant and appear not to be affected by a higher frequency of sequence change, indicating their functional relevance. Furthermore, we show that substitutions lowering the probability of G4s' formation are preferred over neutral or stabilizing modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...