Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776394

ABSTRACT

Cytokinin oxidase/dehydrogenase (CKX) inhibitors reduce the degradation of cytokinins in plants and thereby may improve the efficiency of agriculture and plant tissue culture-based practices. Here, we report a synthesis and structure-activity relationship study of novel urea derivatives concerning their CKX inhibitory activity. The best compounds showed sub-nanomolar IC50 values with maize ZmCKX1, the lowest value yet documented. Other CKX isoforms of maize (Zea mays) and Arabidopsis were also inhibited very effectively. The binding mode of four compounds was characterized based on high-resolution crystal complex structures. Using the soil nematode Caenorhabditis elegans, and human skin fibroblasts, key CKX inhibitors with low toxicity were identified. These compounds enhanced the shoot regeneration of Lobelia, Drosera, and Plectranthus, as well as the growth of Arabidopsis and Brassica napus. At the same time, a key compound (namely 82), activated a cytokinin primary response gene ARR5:GUS and cytokinin sensor TCSv2:GUS, without activating the Arabidopsis cytokinin receptors AHK3 and AHK4. This strongly implies that the effect of compound 82 is due to the upregulation of cytokinin signalling. Overall, this work presents highly effective and easily prepared CKX inhibitors with a low risk of environmental toxicity for further investigation of their potential in agriculture and biotechnology.

2.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38044809

ABSTRACT

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Subject(s)
Arabidopsis , Nucleosides , Nucleosides/metabolism , Nitrogen/metabolism , Plant Breeding , Plants/metabolism , Uridine/metabolism , Arabidopsis/genetics
3.
RSC Chem Biol ; 4(11): 913-925, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920391

ABSTRACT

Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases. Chemical proteomic approaches have been pursued over the last decade to define prenylated proteomes (prenylome) and probe their responses to perturbations in various cellular systems. Here, we describe the discovery of prenylation of a non-canonical prenylated protein, ALDH9A1, which lacks any apparent prenylation motif. This enzyme was initially identified through chemical proteomic profiling of prenylomes in various cell lines. Metabolic labeling with an isoprenoid probe using overexpressed ALDH9A1 revealed that this enzyme can be prenylated inside cells but does not respond to inhibition by prenyltransferase inhibitors. Site-directed mutagenesis of the key residues involved in ALDH9A1 activity indicates that the catalytic C288 bears the isoprenoid modification likely through an NAD+-dependent mechanism. Furthermore, the isoprenoid modification is also susceptible to hydrolysis, indicating a reversible modification. We hypothesize that this modification originates from endogenous farnesal or geranygeranial, the established degradation products of prenylated proteins and results in a thioester form that accumulates. This novel reversible prenoyl modification on ALDH9A1 expands the current paradigm of protein prenylation by illustrating a potentially new type of protein-lipid modification that may also serve as a novel mechanism for controlling enzyme function.

4.
Nat Plants ; 9(8): 1359-1369, 2023 08.
Article in English | MEDLINE | ID: mdl-37550369

ABSTRACT

The heart of oxygenic photosynthesis is the water-splitting photosystem II (PSII), which forms supercomplexes with a variable amount of peripheral trimeric light-harvesting complexes (LHCII). Our knowledge of the structure of green plant PSII supercomplex is based on findings obtained from several representatives of green algae and flowering plants; however, data from a non-flowering plant are currently missing. Here we report a cryo-electron microscopy structure of PSII supercomplex from spruce, a representative of non-flowering land plants, at 2.8 Å resolution. Compared with flowering plants, PSII supercomplex in spruce contains an additional Ycf12 subunit, Lhcb4 protein is replaced by Lhcb8, and trimeric LHCII is present as a homotrimer of Lhcb1. Unexpectedly, we have found α-tocopherol (α-Toc)/α-tocopherolquinone (α-TQ) at the boundary between the LHCII trimer and the inner antenna CP43. The molecule of α-Toc/α-TQ is located close to chlorophyll a614 of one of the Lhcb1 proteins and its chromanol/quinone head is exposed to the thylakoid lumen. The position of α-Toc in PSII supercomplex makes it an ideal candidate for the sensor of excessive light, as α-Toc can be oxidized to α-TQ by high-light-induced singlet oxygen at low lumenal pH. The molecule of α-TQ appears to shift slightly into the PSII supercomplex, which could trigger important structure-functional modifications in PSII supercomplex. Inspection of the previously reported cryo-electron microscopy maps of PSII supercomplexes indicates that α-Toc/α-TQ can be present at the same site also in PSII supercomplexes from flowering plants, but its identification in the previous studies has been hindered by insufficient resolution.


Subject(s)
Photosystem II Protein Complex , alpha-Tocopherol , Photosystem II Protein Complex/metabolism , Cryoelectron Microscopy , alpha-Tocopherol/analysis , alpha-Tocopherol/metabolism , Thylakoids/metabolism , Photosynthesis , Plants/metabolism
5.
Nat Commun ; 14(1): 2728, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169746

ABSTRACT

The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator , Receptors, Aryl Hydrocarbon , Skin , Animals , Female , Mice , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Cytochrome P-450 CYP1A1/genetics , Ligands , Promoter Regions, Genetic , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays/adverse effects
7.
Plant J ; 114(3): 482-498, 2023 05.
Article in English | MEDLINE | ID: mdl-36786691

ABSTRACT

Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.


Subject(s)
Polyamines , Spermidine , Animals , Humans , Polyamines/metabolism , Spermine/metabolism , Zea mays/metabolism , Lysine/metabolism , Ornithine/metabolism , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Catalysis , Mammals/metabolism
8.
J Exp Bot ; 73(14): 4806-4817, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35522987

ABSTRACT

Inhibitors of cytokinin oxidase/dehydrogenase (CKX) reduce the degradation of cytokinins in plants, and this effect can be exploited in agriculture and in plant tissue culture. In this study, we examine the structure-activity relationship of two series of CKX inhibitors based on diphenylurea. The compounds of Series I were derived from the recently published CKX inhibitors 3TFM-2HM and 3TFM-2HE, and we identified key substituents with increased selectivity for maize ZmCKX1 and ZmCKX4a over AtCKX2 from Arabidopsis. Series II contained compounds that further exceled in CKX inhibitory activity as well as in the ease of their synthesis. The best inhibitors exhibited half-maximal inhibitory concentration (IC50) values in low nanomolar ranges with ZmCKX1 and especially with ZmCKX4a, which is generally more resistant to inhibition. The activity of the key compounds was verified in tobacco and lobelia leaf-disk assays, where N6-isopentenyladenine was protected from degradation and promoted shoot regeneration. All the prepared compounds were further tested for toxicity against Caenorhabditis elegans, and the assays revealed clear differences in toxicity between compounds with and without a hydroxyalkyl group. In a broader perspective, this work increases our understanding of CKX inhibition and provides a more extensive portfolio of compounds suitable for agricultural and biotechnological research.


Subject(s)
Arabidopsis , Cytokinins , Arabidopsis/metabolism , Cytokinins/metabolism , Oxidoreductases/metabolism , Plants/metabolism , Zea mays/metabolism
9.
Int J Biol Macromol ; 203: 116-129, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35063491

ABSTRACT

This work explores the interaction of 9/10-nitro-oleic acid (NO2-OA) with human serum albumin (HSA). The molecular mechanism of the biological action of NO2-OA is to our knowledge based on a reversible covalent reaction-Michael addition of nucleophilic amino acid residues of proteins. Since HSA is an important fatty acid transporter, a key question is whether NO2-OA can bind covalently or non-covalently to HSA, similarly to oleic acid (OA), which can interact with the FA1-FA7 binding sites of the HSA molecule. 1H NMR studies and competition analysis with OA and the drugs ibuprofen and warfarin were used to investigate a potential non-covalent binding mode. NO2-OA/HSA binding was confirmed to compete with warfarin for FA-7 with significantly higher affinity. NO2-OA competes with ibuprofen for FA-3 and FA-6, however, in contrast to the situation with warfarin, the binding affinities are not significantly different. The described interactions are based exclusively on non-covalent binding. No covalent binding of NO2-OA to HSA was detected by MS/MS. More detailed studies based on MALDI-TOF-MS and Ellman's assay indicated that HSA can be covalently modified in the presence of NO2-OA to a very limited extent. It was also shown that NO2-OA has a higher affinity to HSA than that of OA.


Subject(s)
Carrier Proteins , Serum Albumin , Carrier Proteins/metabolism , Humans , Nitro Compounds , Oleic Acid , Oleic Acids , Protein Binding , Serum Albumin/chemistry , Tandem Mass Spectrometry
10.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34438948

ABSTRACT

Antimicrobial peptides play a crucial role in the innate immune system of multicellular organisms. LL-37 is the only known member of the human cathelicidin family. As well as possessing antibacterial properties, it is actively involved in various physiological responses in eukaryotic cells. Accordingly, there is considerable interest in large-scale, low-cost, and microbial endotoxin-free production of LL-37 recombinant peptides for pharmaceutical applications. As a heterologous expression biofactory, we have previously obtained homologous barley (Hordeum vulgare L.) as an attractive vehicle for producing recombinant human LL-37 in the grain storage compartment, endosperm. The long-term stability of expression and inheritance of transgenes is necessary for the successful commercialization of recombinant proteins. Here, we report the stable inheritance and expression of the LL-37 gene in barley after six generations, including two consecutive seasons of experimental field cultivation. The transgenic plants showed normal growth and remained fertile. Based on the bacteria viability test, the produced peptide LL-37 retained high antibacterial activity.

11.
J Exp Bot ; 72(2): 355-370, 2021 02 02.
Article in English | MEDLINE | ID: mdl-32945834

ABSTRACT

Increasing crop productivity is our major challenge if we are to meet global needs for food, fodder and fuel. Controlling the content of the plant hormone cytokinin is a method of improving plant productivity. Cytokinin oxidase/dehydrogenase (CKO/CKX) is a major target in this regard because it degrades cytokinins. Here, we describe the synthesis and biological activities of new CKX inhibitors derived mainly from diphenylurea. They were tested on four CKX isoforms from maize and Arabidopsis, where the best compounds showed IC50 values in the 10-8 M concentration range. The binding mode of the most efficient inhibitors was characterized from high-resolution crystal complexed structures. Although these compounds do not possess intrinsic cytokinin activity, we have demonstrated their tremendous potential for use in the plant tissue culture industry as well as in agriculture. We have identified a key substance, compound 19, which not only increases stress resistance and seed yield in Arabidopsis, but also improves the yield of wheat, barley and rapeseed grains under field conditions. Our findings reveal that modulation of cytokinin levels via CKX inhibition can positively affect plant growth, development and yield, and prove that CKX inhibitors can be an attractive target in plant biotechnology and agriculture.


Subject(s)
Arabidopsis , Oxidoreductases , Biotechnology , Cytokinins
12.
J Exp Bot ; 71(22): 7088-7102, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32845293

ABSTRACT

Plant genomes generally contain two aldehyde dehydrogenase 10 (ALDH10) genes, which encode NAD+-dependent enzymes. These oxidize various aminoaldehydes that are produced by the catabolism of amino acids and polyamines. ALDH10s are closely related to the animal and fungal trimethylaminobutyraldehyde dehydrogenases (TMABADHs) that are involved in the synthesis of γ-butyrobetaine, the precursor of carnitine. Here, we explore the ability of the Arabidopsis thaliana proteins AtALDH10A8 and AtALDH10A9 to oxidize aminoaldehydes. We demonstrate that these enzymes display high TMABADH activities in vitro. Moreover, they can complement the Candida albicans tmabadhΔ/Δ null mutant. These findings illustrate the link between AtALDH10A8 and AtALDH10A9 and γ-butyrobetaine synthesis. An analysis of single and double knockout Arabidopsis mutant lines revealed that the double mutants had reduced γ-butyrobetaine levels. However, there were no changes in the carnitine contents of these mutants. The double mutants were more sensitive to salt stress. In addition, the siliques of the double mutants had a significant proportion of seeds that failed to mature. The mature seeds contained higher amounts of triacylglycerol, facilitating accelerated germination. Taken together, these results show that ALDH10 enzymes are involved in γ-butyrobetaine synthesis. Furthermore, γ-butyrobetaine fulfils a range of physiological roles in addition to those related to carnitine biosynthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Betaine/analogs & derivatives , Carnitine , Germination , Salt Tolerance , Seeds
13.
Plant Cell Environ ; 43(9): 2172-2191, 2020 09.
Article in English | MEDLINE | ID: mdl-32441772

ABSTRACT

Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.


Subject(s)
Cell Wall/chemistry , Phenols/metabolism , Polysaccharides/metabolism , Zea mays/cytology , Zea mays/metabolism , Cell Wall/metabolism , Cellulose/analysis , Cellulose/chemistry , Coumaric Acids/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Monosaccharides/analysis , Plant Cells/metabolism , Plant Roots/metabolism , Polysaccharides/chemistry , Salt Stress/physiology , Seedlings/cytology , Seedlings/metabolism , Xylans/analysis , Xylans/chemistry , Xylans/metabolism , Zea mays/growth & development
14.
N Biotechnol ; 57: 1-3, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32017997

ABSTRACT

The Green for Good (G4G) conferences bring together plant science researchers mainly from Europe, as well as guests from overseas. As with previous G4G conferences, the 5th event (G4G V) was held at Palacký University Olomouc, Czech Republic, organized by the Centre of Region Haná for Biotechnological and Agricultural Research and the European Federation of Biotechnology. The meeting focused on trends in plant biotechnology, genetics and biochemistry to identify the basis for solving the global challenge of providing food for an ever-growing population. The invited speakers provided insights into plant genomics, gene-editing, plant molecular farming and application of nanomaterials. This conference meeting report summarizes key lectures given by a variety of excellent speakers.


Subject(s)
Biotechnology , Plants/genetics , Agriculture , Europe , Gene Editing , Humans , Research Personnel
15.
Planta ; 251(1): 1, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31776777

ABSTRACT

MAIN CONCLUSION: Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.


Subject(s)
Cytokinins/metabolism , Histidine Kinase/metabolism , Populus/metabolism , Tandem Mass Spectrometry , Terpenes/metabolism
16.
Planta ; 250(1): 229-244, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30980246

ABSTRACT

MAIN CONCLUSION: Isoprenoid and aromatic cytokinins occur in poplar as free compounds and constituents of tRNA, poplar isopentenyltransferases are involved in the production of isoprenoid cytokinins, while biosynthesis of their aromatic counterparts remains unsolved. Cytokinins are phytohormones with a fundamental role in the regulation of plant growth and development. They occur naturally either as isoprenoid or aromatic derivatives, but the latter are quite rare and less studied. Here, the spatial expression of all nine isopentenyl transferase genes of Populus × canadensis cv. Robusta (PcIPTs) as analyzed by RT-qPCR revealed a tissue preference and strong differences in expression levels for the different adenylate and tRNA PcIPTs. Together with their phylogeny, this result suggests a functional diversification for the different PcIPT proteins. Additionally, the majority of PcIPT genes were cloned and expressed in Arabidopsis thaliana under an inducible promoter. The cytokinin levels measured in the Arabidopsis-overexpressing lines as well as their phenotype indicate that the studied adenylate and tRNA PcIPT proteins are functional in vivo and thus will contribute to the cytokinin pool in poplar. We screened the cytokinin content in leaves of 12 Populus species by ultra-high performance-tandem mass spectrometry (UHPLC-MS/MS) and discovered that the capacity to produce not only isoprenoid, but also aromatic cytokinins is widespread amongst the Populus accessions studied. Important for future studies is that the levels of aromatic cytokinins transiently increase after daybreak and are much higher in older plants.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Cytokinins/biosynthesis , Plant Growth Regulators/metabolism , Populus/genetics , Alkyl and Aryl Transferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Phylogeny , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Populus/metabolism , Tandem Mass Spectrometry
17.
J Pharmacol Exp Ther ; 369(3): 489-502, 2019 06.
Article in English | MEDLINE | ID: mdl-30940696

ABSTRACT

Methionine deprivation induces growth arrest and death of cancer cells. To eliminate l-methionine we produced, purified, and characterized the recombinant pyridoxal 5'-phosphate (PLP)-dependent l-methionine γ-lyase (MGL)- BL929 from the cheese-ripening Brevibacterium aurantiacum Transformation of an Escherichia coli strain with the gene BL929 from B. aurantiacum optimized for E. coli expression led to production of the MGL-BL929. Elimination of l-methionine and cytotoxicity in vitro were assessed, and methylation-sensitive epigenetics was explored for changes resulting from exposure of cancer cells to the enzyme. A bioreactor was built by encapsulation of the protein in human erythrocytes to achieve sustained elimination of l-methionine in extracellular fluids. Catalysis was limited to α,γ-elimination of l-methionine and l-homocysteine. The enzyme had no activity on other sulfur-containing amino acids. Enzyme activity decreased in presence of serum albumin or plasma resulting from reduction of PLP availability. Elimination of l-methionine induced cytotoxicity on a vast panel of human cancer cell lines and spared normal cells. Exposure of colorectal carcinoma cells to the MGL-BL929 reduced methyl-CpG levels of hypermethylated gene promoters including that of CDKN2A, whose mRNA expression was increased, together with a decrease in global histone H3 dimethyl lysine 9. The MGL-erythrocyte bioreactor durably preserves enzyme activity in vitro and strongly eliminates l-methionine from medium.


Subject(s)
Brevibacterium/enzymology , Carbon-Sulfur Lyases/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Methionine/metabolism , Recombinant Proteins/pharmacology , Adult , Animals , Bioreactors , Capsules , Cell Line, Tumor , Humans , Mice
18.
Biosci Rep ; 39(4)2019 04 30.
Article in English | MEDLINE | ID: mdl-30914451

ABSTRACT

Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for γ-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αßE region consisting of an α-helix and a ß-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete ß-nicotinamide adenine dinucleotide (NAD+) binding pocket.


Subject(s)
Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Protein Conformation , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/ultrastructure , Amino Acid Sequence/genetics , Binding Sites/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Humans , Kinetics , NAD/genetics , Protein Structure, Secondary , Substrate Specificity/genetics
19.
Chem Biol Interact ; 304: 194-201, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30768969

ABSTRACT

Plant cytosolic aldehyde dehydrogenases from family 2 (ALDH2s, EC 1.2.1.3) are non-specific enzymes and participate for example in the metabolism of acetaldehyde or biosynthesis of phenylpropanoids. Plant aminoaldehyde dehydrogenases (AMADHs, ALDH10 family, EC 1.2.1.19) are broadly specific and play an important role in polyamine degradation or production of osmoprotectants. We have tested imidazole and pyrazole carbaldehydes and their alkyl-, allyl-, benzyl-, phenyl-, pyrimidinyl- or thienyl-derivatives as possible substrates of plant ALDH2 and ALDH10 enzymes. Imidazole represents a building block of histidine, histamine as well as certain alkaloids. It also appears in synthetic pharmaceuticals such as imidazole antifungals. Biological compounds containing pyrazole are rare (e.g. pyrazole-1-alanine and pyrazofurin antibiotics) but the ring is often found as a constituent of many synthetic drugs and pesticides. The aim was to evaluate whether aldehyde compounds based on azole heterocycles are oxidized by the enzymes, which would further support their expected role as detoxifying aldehyde scavengers. The analyzed imidazole and pyrazole carbaldehydes were only slowly converted by ALDH10s but well oxidized by cytosolic maize ALDH2 isoforms (particularly by ALDH2C1). In the latter case, the respective Km values were in the range of 10-2000 µmol l-1; the kcat values appeared mostly between 0.1 and 1.0 s-1. The carbaldehyde group at the position 4 of imidazole was oxidized faster than that at the position 2. Such a difference was not observed for pyrazole carbaldehydes. Aldehydes with an aromatic substituent on their heterocyclic ring were oxidized faster than those with an aliphatic substituent. The most efficient of the tested substrates were comparable to benzaldehyde and p-anisaldehyde known as the best aromatic aldehyde substrates of plant cytosolic ALDH2s in vitro.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Aldehydes/metabolism , Pisum sativum/enzymology , Solanum lycopersicum/enzymology , Zea mays/enzymology , Aldehydes/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Molecular Structure , Oxidation-Reduction , Pyrazoles/chemistry , Pyrazoles/metabolism
20.
J Mol Biol ; 431(3): 576-592, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30580036

ABSTRACT

Heterokonts, Alveolata protists, green algae from Charophyta and Chlorophyta divisions, and all Embryophyta plants possess an aldehyde dehydrogenase (ALDH) gene named ALDH12. Here, we provide a biochemical characterization of two ALDH12 family members from the lower plant Physcomitrella patens and higher plant Zea mays. We show that ALDH12 encodes an NAD+-dependent glutamate γ-semialdehyde dehydrogenase (GSALDH), which irreversibly converts glutamate γ-semialdehyde (GSAL), a mitochondrial intermediate of the proline and arginine catabolism, to glutamate. Sedimentation equilibrium and small-angle X-ray scattering analyses reveal that in solution both plant GSALDHs exist as equilibrium between a domain-swapped dimer and the dimer-of-dimers tetramer. Plant GSALDHs share very low-sequence identity with bacterial, fungal, and animal GSALDHs (classified as ALDH4), which are the closest related ALDH superfamily members. Nevertheless, the crystal structure of ZmALDH12 at 2.2-Šresolution  shows that nearly all key residues involved in the recognition of GSAL are identical to those in ALDH4, indicating a close functional relationship with ALDH4. Phylogenetic analysis suggests that the transition from ALDH4 to ALDH12 occurred during the evolution of the endosymbiotic plant ancestor, prior to the evolution of green algae and land plants. Finally, ALDH12 expression in maize and moss is downregulated in response to salt and drought stresses, possibly to maintain proline levels. Taken together, these results provide molecular insight into the biological roles of the plant ALDH12 family.


Subject(s)
Aldehyde Dehydrogenase/chemistry , Plants/chemistry , Proline/chemistry , Crystallography, X-Ray/methods , Phylogeny , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...