Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 16(1): 285, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27894276

ABSTRACT

BACKGROUND: Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (µ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. RESULTS: Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective µ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6 (nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. CONCLUSIONS: The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/physiology , Cyanobacteria/metabolism , Proteome/physiology , Amino Acid Sequence , Arabidopsis/genetics , Bacterial Proteins/chemistry , Base Sequence , Cyanobacteria/enzymology , Cyanobacteria/genetics , Escherichia coli/genetics , Genes, Bacterial , Mutation , Nitrogen/metabolism , Open Reading Frames , Photosynthesis , Promoter Regions, Genetic , RNA, Bacterial/genetics , RNA, Messenger/genetics , Sequence Alignment , Synechocystis/genetics , Synechocystis/metabolism , Transcription, Genetic , Transcriptome
2.
Genetics ; 203(3): 1149-59, 2016 07.
Article in English | MEDLINE | ID: mdl-27182944

ABSTRACT

Previous studies have shown that infection of Prochlorococcus MED4 by the cyanophage P-SSP7 leads to increased transcript levels of host endoribonuclease (RNase) E. However, it has remained enigmatic whether this is part of a host defense mechanism to degrade phage messenger RNA (mRNA) or whether this single-strand RNA-specific RNase is utilized by the phage. Here we describe a hitherto unknown means through which this cyanophage increases expression of RNase E during phage infection and concomitantly protects its own RNA from degradation. We identified two functionally different RNase E mRNA variants, one of which is significantly induced during phage infection. This transcript lacks the 5' UTR, is considerably more stable than the other transcript, and is likely responsible for increased RNase E protein levels during infection. Furthermore, selective enrichment and in vivo analysis of double-stranded RNA (dsRNA) during infection revealed that phage antisense RNAs (asRNAs) sequester complementary mRNAs to form dsRNAs, such that the phage protein-coding transcriptome is nearly completely covered by asRNAs. In contrast, the host protein-coding transcriptome is only partially covered by asRNAs. These data suggest that P-SSP7 orchestrates degradation of host RNA by increasing RNase E expression while masking its own transcriptome from RNase E degradation in dsRNA complexes. We propose that this combination of strategies contributes significantly to phage progeny production.


Subject(s)
Bacteriophages/genetics , Endoribonucleases/genetics , Prochlorococcus/genetics , Transcriptome/genetics , Bacteriophages/pathogenicity , Endoribonucleases/biosynthesis , Genome, Viral , Host-Pathogen Interactions/genetics , Prochlorococcus/virology , RNA Stability/genetics , RNA, Antisense/biosynthesis , RNA, Antisense/genetics , RNA, Double-Stranded/genetics , RNA, Messenger/genetics
3.
FEMS Microbiol Rev ; 39(3): 301-15, 2015 May.
Article in English | MEDLINE | ID: mdl-25934122

ABSTRACT

Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain µORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.


Subject(s)
Cyanobacteria/physiology , Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , Bacterial Proteins/genetics , Cyanobacteria/genetics , Environment , Photosynthesis , RNA, Bacterial/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Stress, Physiological/genetics , Transcriptome
4.
Appl Environ Microbiol ; 81(15): 5212-22, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26025890

ABSTRACT

Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.


Subject(s)
Anabaena/drug effects , Gene Expression Profiling , Phosphorus/metabolism , Proteome/analysis , Stress, Physiological , Anabaena/growth & development , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Metabolic Networks and Pathways/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Sequence Analysis, DNA , Tandem Mass Spectrometry
5.
Sci Rep ; 5: 9560, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25902393

ABSTRACT

In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5'UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5'UTR. Such an sRNA/mRNA structure, which we name 'actuaton', represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.


Subject(s)
Adaptation, Physiological/genetics , Synechocystis/genetics , Transcriptome , 5' Untranslated Regions , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA, Antisense/chemistry , RNA, Antisense/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation Site
6.
ISME J ; 9(10): 2139-52, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25689027

ABSTRACT

Massive blooms of toxic cyanobacteria frequently occur in the central Baltic Sea during the summer. In the surface scum, cyanobacterial cells are exposed to high light (HL) intensity, high oxygen partial pressure and other stresses. To mimic these conditions, cultures of Nodularia spumigena CCY9414, which is a strain isolated from a cyanobacterial summer bloom in the Baltic Sea, were incubated at a HL intensity of 1200 µmol photons m(-2) s(-1) or a combination of HL and increased oxygen partial pressure. Using differential RNA sequencing, we compared the global primary transcriptomes of control and stressed cells. The combination of oxidative and light stresses induced the expression of twofold more genes compared with HL stress alone. In addition to the induction of known stress-responsive genes, such as psbA, ocp and sodB, Nodularia cells activated the expression of genes coding for many previously unknown light- and oxidative stress-related proteins. In addition, the expression of non-protein-coding RNAs was found to be stimulated by these stresses. Among them was an antisense RNA to the phycocyanin-encoding mRNA cpcBAC and the trans-encoded regulator of photosystem I, PsrR1. The large genome capacity allowed Nodularia to harbor more copies of stress-relevant genes such as psbA and small chlorophyll-binding protein genes, combined with the coordinated induction of these and many additional genes for stress acclimation. Our data provide a first insight on how N. spumigena became adapted to conditions relevant for a cyanobacterial bloom in the Baltic Sea.


Subject(s)
Light , Nodularia/metabolism , Oxidative Stress/physiology , Chlorophyll/metabolism , Gene Expression Profiling , Nodularia/physiology , Nodularia/radiation effects , Photosynthesis/physiology , Photosynthesis/radiation effects , RNA, Bacterial/metabolism , Seawater/microbiology
7.
Genome Announc ; 2(4)2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25081267

ABSTRACT

Synechocystis sp. strain PCC 6714 is a unicellular cyanobacterium closely related to the popular model organism Synechocystis sp. strain PCC 6803. A combination of PacBio SMRT and Illumina GAIIx data results in a highly accurate finished genome sequence that provides a reliable resource for further comparative analyses.

8.
Sci Rep ; 4: 6187, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25155278

ABSTRACT

Blooms of the dinitrogen-fixing marine cyanobacterium Trichodesmium considerably contribute to new nitrogen inputs into tropical oceans. Intriguingly, only 60% of the Trichodesmium erythraeum IMS101 genome sequence codes for protein, compared with ~85% in other sequenced cyanobacterial genomes. The extensive non-coding genome fraction suggests space for an unusually high number of unidentified, potentially regulatory non-protein-coding RNAs (ncRNAs). To identify the transcribed fraction of the genome, here we present a genome-wide map of transcriptional start sites (TSS) at single nucleotide resolution, revealing the activity of 6,080 promoters. We demonstrate that T. erythraeum has the highest number of actively splicing group II introns and the highest percentage of TSS yielding ncRNAs of any bacterium examined to date. We identified a highly transcribed retroelement that serves as template repeat for the targeted mutation of at least 12 different genes by mutagenic homing. Our findings explain the non-coding portion of the T. erythraeum genome by the transcription of an unusually high number of non-coding transcripts in addition to the known high incidence of transposable elements. We conclude that riboregulation and RNA maturation-dependent processes constitute a major part of the Trichodesmium regulatory apparatus.


Subject(s)
Cyanobacteria/metabolism , Transcriptome , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Cyanobacteria/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Introns , Molecular Sequence Data , Promoter Regions, Genetic , Retroelements
9.
DNA Res ; 21(5): 527-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24935866

ABSTRACT

RNA-seq and especially differential RNA-seq-type transcriptomic analyses (dRNA-seq) are powerful analytical tools, as they not only provide insights into gene expression changes but also provide detailed information about all promoters active at a given moment, effectively giving a deep insight into the transcriptional landscape. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a unicellular model cyanobacterium that is widely used in research fields from ecology, photophysiology to systems biology, modelling and biotechnology. Here, we analysed the response of the Synechocystis 6803 primary transcriptome to different, environmentally relevant stimuli. We established genome-wide maps of the transcriptional start sites active under 10 different conditions relevant for photosynthetic growth and identified 4,091 transcriptional units, which provide information about operons, 5' and 3' untranslated regions (UTRs). Based on a unique expression factor, we describe regulons and relevant promoter sequences at single-nucleotide resolution. Finally, we report several sRNAs with an intriguing expression pattern and therefore likely function, specific for carbon depletion (CsiR1), nitrogen depletion (NsiR4), phosphate depletion (PsiR1), iron stress (IsaR1) or photosynthesis (PsrR1). This dataset is accompanied by comprehensive information providing extensive visualization and data access to allow an easy-to-use approach for the design of experiments, the incorporation into modelling studies of the regulatory system and for comparative analyses.


Subject(s)
Synechocystis/genetics , Transcriptome , 3' Untranslated Regions , 5' Untranslated Regions , Gene Expression Regulation, Bacterial , Genome, Bacterial , Operon , Photosynthesis/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Synechocystis/metabolism , Transcription Initiation Site
10.
BMC Bioinformatics ; 15: 122, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24780064

ABSTRACT

BACKGROUND: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. RESULTS: We present RNAseg, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. CONCLUSIONS: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Genomics , Helicobacter pylori/genetics , Operon , Transcription Initiation Site , Untranslated Regions
11.
DNA Res ; 21(3): 255-66, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24408876

ABSTRACT

Synechocystis sp. PCC 6803 is the most popular cyanobacterial model for prokaryotic photosynthesis and for metabolic engineering to produce biofuels. Genomic and transcriptomic comparisons between closely related bacteria are powerful approaches to infer insights into their metabolic potentials and regulatory networks. To enable a comparative approach, we generated the draft genome sequence of Synechocystis sp. PCC 6714, a closely related strain of 6803 (16S rDNA identity 99.4%) that also is amenable to genetic manipulation. Both strains share 2838 protein-coding genes, leaving 845 unique genes in Synechocystis sp. PCC 6803 and 895 genes in Synechocystis sp. PCC 6714. The genetic differences include a prophage in the genome of strain 6714, a different composition of the pool of transposable elements, and a ∼ 40 kb genomic island encoding several glycosyltransferases and transport proteins. We verified several physiological differences that were predicted on the basis of the respective genome sequence. Strain 6714 exhibited a lower tolerance to Zn(2+) ions, associated with the lack of a corresponding export system and a lowered potential of salt acclimation due to the absence of a transport system for the re-uptake of the compatible solute glucosylglycerol. These new data will support the detailed comparative analyses of this important cyanobacterial group than has been possible thus far. Genome information for Synechocystis sp. PCC 6714 has been deposited in Genbank (accession no AMZV01000000).


Subject(s)
Genome, Bacterial , Prophages/genetics , Synechocystis/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity , Transcriptome
12.
PLoS One ; 8(3): e60224, 2013.
Article in English | MEDLINE | ID: mdl-23555932

ABSTRACT

Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.


Subject(s)
Gene Expression Profiling/methods , Genome, Bacterial/genetics , Nodularia/genetics , Nodularia/physiology , Ecology
SELECTION OF CITATIONS
SEARCH DETAIL
...