Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicol Appl Pharmacol ; 415: 115443, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33548273

ABSTRACT

The brain is a critical target for the toxic action of organophosphorus (OP) inhibitors of acetylcholinesterase (AChE) such as the nerve agent sarin. However, the available oxime antidote 2-PAM only reactivates OP-inhibited AChE in peripheral tissues. Monoisonitrosoacetone (MINA), a tertiary oxime, reportedly reactivates AChE in the central nervous system (CNS). The current study investigated whether MINA would be beneficial as a supplemental oxime treatment in preventing lethality and reducing morbidity following lethal sarin exposure, MINA supplement would improve AChE recovery in the body, and MINA would be detectable in the CNS. Guinea pigs were exposed to sarin and treated with atropine sulfate and 2-PAM at one minute. Additional 2-PAM or MINA was administered at 3, 5, 15, or 30 min after sarin exposure. Survival and morbidity were assessed at 2 and 24 h. AChE activity in brain and peripheral tissues was evaluated one hour after MINA and 2-PAM treatment. An in vivo microdialysis technique was used to determine partitioning of MINA into the brain. A liquid chromatography-tandem mass spectrometry method was developed for the analysis of MINA in microdialysates. MINA-treated animals exhibited significantly higher survival and lower morbidity compared to 2-PAM-treated animals. 2-PAM was significantly more effective in reactivating AChE in peripheral tissues, but only MINA reactivated AChE in the CNS. MINA was found in guinea pig brain microdialysate samples beginning at ~10 min after administration in a dose-related manner. The data strongly suggest that a centrally penetrating oxime could provide significant benefit as an adjunct to atropine and 2-PAM therapy for OP intoxication.


Subject(s)
Acetylcholinesterase/metabolism , Antidotes/pharmacology , Brain/drug effects , Cholinesterase Reactivators/pharmacology , Organophosphate Poisoning/prevention & control , Oximes/pharmacology , Sarin , Animals , Antidotes/metabolism , Brain/enzymology , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Guinea Pigs , Male , Microdialysis , Organophosphate Poisoning/enzymology , Oximes/metabolism , Permeability , Pralidoxime Compounds/metabolism , Pralidoxime Compounds/pharmacology , Tissue Distribution
2.
Biochem Pharmacol ; 81(1): 164-9, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20846507

ABSTRACT

Human serum butyrylcholinesterase (Hu BChE) is currently under advanced development as a bioscavenger for the prophylaxis of organophosphorus (OP) nerve agent toxicity in humans. It is estimated that a dose of 200mg will be required to protect a human against 2×LD(50) of soman. To provide data for initiating an investigational new drug application for the use of this enzyme as a bioscavenger in humans, we purified enzyme from Cohn fraction IV-4 paste and initiated safety and efficacy evaluations in mice, guinea pigs, and non-human primates. In mice, we demonstrated that a single dose of enzyme that is 30 times the therapeutic dose circulated in blood for at least four days and did not cause any clinical pathology in these animals. In this study, we report the results of safety and efficacy evaluations conducted in guinea pigs. Various doses of Hu BChE delivered by i.m. injections peaked at ∼24h and had a mean residence time of 78-103h. Hu BChE did not exhibit any toxicity in guinea pigs as measured by general observation, serum chemistry, hematology, and gross and histological tissue changes. Efficacy evaluations showed that Hu BChE protected guinea pigs from an exposure of 5.5×LD(50) of soman or 8×LD(50) of VX. These results provide convincing data for the development of Hu BChE as a bioscavenger that can protect humans against all OP nerve agents.


Subject(s)
Antidotes/pharmacology , Butyrylcholinesterase/pharmacology , Chemical Warfare Agents/toxicity , Organothiophosphorus Compounds/toxicity , Soman/toxicity , Animals , Antidotes/pharmacokinetics , Butyrylcholinesterase/pharmacokinetics , Dose-Response Relationship, Drug , Female , Guinea Pigs , Half-Life , Humans , Male
3.
Mil Med ; 175(11): 878-82, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21121499

ABSTRACT

Scopolamine (SCP) is an anticholinergic drug used clinically for decades to treat motion sickness, as a surgical preanesthetic, and as a smooth muscle antispasmodic. It has also been used experimentally as a pretreatment and/or treatment adjunct to mitigate the toxic sequelae of organophosphorus (OP) nerve agent intoxication. SCP has been reported to increase survival, prevent or terminate seizures, and reduce morbidity from nerve agent intoxication in a number of animal models. The purpose of this study was to evaluate the effect of atropine dose, pyridostigmine bromide (PB) pretreatment, and oxime selection on the efficacy of SCP as an adjunctive treatment to enhance survival following lethal nerve agent exposure in guinea pigs. The results indicate that the use of an effective oxime and/or PB pretreatment was a critical factor in determining the efficacy of SCP. SCP can also reduce the dose of atropine required for survival against lethal nerve agent intoxication.


Subject(s)
Chemical Warfare Agents/poisoning , Cholinergic Agents/administration & dosage , Neurotoxicity Syndromes/prevention & control , Organophosphate Poisoning , Scopolamine/administration & dosage , Animals , Atropine/administration & dosage , Dose-Response Relationship, Drug , Drug Therapy, Combination , Guinea Pigs , Male , Military Medicine , Neurotoxicity Syndromes/etiology , Oximes/administration & dosage , Pyridostigmine Bromide/administration & dosage , Survival Analysis
4.
Chem Biol Interact ; 187(1-3): 318-24, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20230808

ABSTRACT

Current oxime therapies do not readily cross the blood-brain barrier to reactivate organophosphorus nerve agent-inhibited cholinesterase (ChE) within the CNS. We investigated the ability of monoisonitrosoacetone (MINA), a tertiary oxime, to reactivate ChE inhibited by the nerve agent sarin (GB), cyclosarin (GF), or VX, in peripheral tissues and brain of guinea pigs and determined whether reactivation in the CNS will enhance protection against the lethal effects of these three agents. In the reactivation experiment, animals were pretreated with atropine methylnitrate (1.0mg/kg, i.m.) 15 min prior to subcutaneous (s.c.) challenge with 1.0 x LD(50) of GB, GF, or VX. Fifteen minutes later animals were treated intramuscularly (i.m.) with MINA (ranging from 22.1 to 139.3mg/kg) or 2-PAM (25.0mg/kg). At 60 min after nerve agent, CNS (brainstem, cerebellum, cortex, hippocampus, midbrain, spinal cord, and striatum) and peripheral (blood, diaphragm, heart, and skeletal muscle) tissues were collected for ChE analysis. MINA reactivated nerve agent-inhibited ChE in the CNS and peripheral tissues in a dose-dependent manner in the following order of potency: GB>GF>VX. In a survival experiment, animals were injected i.m. with atropine sulfate (0.5mg/kg), 2-PAM (25.0mg/kg), or MINA (35.0, 60.0, or 100.0mg/kg) alone or in combination 1 min after challenge with varying s.c. doses of GB, GF, or VX to determine the level of protection. The rank order of MINA's efficacy in guinea pigs against nerve agent lethality was the same as for reactivation of inhibited ChE in the CNS. These data show that MINA is capable of reactivating nerve agent-inhibited ChE and that the extent of ChE reactivation within the CNS strongly relates to its therapeutic efficacy.


Subject(s)
Acetone/analogs & derivatives , Acetone/pharmacology , Acetylcholinesterase/metabolism , Brain/drug effects , Brain/enzymology , Chemical Warfare Agents/toxicity , Cholinesterase Reactivators/pharmacology , Enzyme Activation/drug effects , Nitroso Compounds/pharmacology , Acetone/therapeutic use , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Brain/metabolism , Drug Interactions , Guinea Pigs , Male , Nitroso Compounds/therapeutic use , Pralidoxime Compounds/pharmacology , Survival Analysis
5.
Chem Biol Interact ; 187(1-3): 416-20, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20144889

ABSTRACT

Pyridostigmine bromide (PB) was approved by the U.S. Food and Drug Administration (FDA) in 2003 as a pretreatment in humans against the lethal effects of the irreversible nerve agent soman (GD). Organophosphate (OP) chemical warfare agents such as GD exert their toxic effects by inhibiting acetylcholinesterase (AChE) from terminating the action of acetylcholine at postsynaptic sites in cholinergic nerve terminals (including crucial peripheral muscle such as diaphragm). As part of the post-marketing approval of PB, the FDA required (under 21CFR314, the "two animal rule") the study of a non-human primate model (the common marmoset Callithrix jacchus jacchus) to demonstrate increased survival against lethal GD poisoning, and protection of physiological hemi-diaphragm function after PB pretreatment and subsequent GD exposure. Marmosets (male and female) were placed in the following experimental groups: (i) control (saline pretreatment only), (ii) low dose PB (12.5 microg/kg), or (iii) high dose (39.5 microg/kg) PB. Thirty minutes after the PB dose, animals were challenged with either saline (control) or soman (GD, 45 microg/kg), followed 1 min later by atropine (2mg/kg) and 2-PAM (25mg/kg). After a further 16 min, animals were euthanized and the complete diaphragm removed; the right hemi-diaphragm was frozen immediately at -80 degrees C, and the left hemi-diaphragm was placed in a tissue bath for 4h (to allow for decarbamylation to occur), then frozen. AChE activities were determined using the automated WRAIR cholinesterase assay. Blood samples were collected for AChE activities prior to PB, before GD challenge, and after sacrifice. RBC-AChE was inhibited by approximately 18% and 50% at the low and high doses of PB, respectively, compared to control (baseline) activity. In the absence of PB pretreatment, the inhibition of RBC-AChE by GD was 98%. The recovery of hemi-diaphragm AChE activity after the 4h wash period (decarbamylation) was approximately 8% and 17%, at the low and high PB doses, respectively, compared with the baseline (control) AChE activity prior to PB pretreatment or soman exposure. The results suggest that PB pretreatment protects a critical fraction of AChE activity in the marmoset diaphragm, which is sufficient to allow the animal to breathe despite exposure to a dose of soman that is lethal in unprotected animals.


Subject(s)
Acetylcholinesterase/metabolism , Diaphragm/drug effects , Diaphragm/enzymology , Pyridostigmine Bromide/pharmacology , Soman/toxicity , Acetylcholinesterase/blood , Animals , Callithrix , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Erythrocytes/enzymology , Female , Humans , Male , Reproducibility of Results
6.
Toxicol Appl Pharmacol ; 231(2): 157-64, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18508103

ABSTRACT

A structure-activity analysis was used to evaluate the variation in oxime efficacy of 2-PAM, obidoxime, HI-6 and ICD585 against nerve agents. In vivo oxime protection and in vitro oxime reactivation were used as indicators of oxime efficacy against VX, sarin, VR and cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy after sc administration of nerve agent. Analysis of in vitro reactivation was conducted with second-order rate contants (k(r2)) for oxime reactivation of agent-inhibited acetylcholinesterase (AChE) from guinea pig erythrocytes. In vivo oxime PR and in vitro k(r2) decreased as the volume of the alkylmethylphosphonate moiety of nerve agents increased from VX to cyclosarin. This effect was greater with 2-PAM and obidoxime (>14-fold decrease in PR) than with HI-6 and ICD585 (<3.7-fold decrease in PR). The decrease in oxime PR and k(r2) as the volume of the agent moiety conjugated to AChE increased was consistent with a steric hindrance mechanism. Linear regression of log (PR-1) against log (k(r2)[oxime dose]) produced two offset parallel regression lines that delineated a significant difference between the coupling of oxime reactivation and oxime protection for HI-6 and ICD585 compared to 2-PAM and obidoxime. HI-6 and ICD585 appeared to be 6.8-fold more effective than 2-PAM and obidoxime at coupling oxime reactivation to oxime protection, which suggested that the isonicotinamide group that is common to both of these oximes, but absent from 2-PAM and obidoxime, is important for oxime efficacy.


Subject(s)
Cholinesterase Inhibitors/toxicity , Cholinesterase Reactivators/pharmacology , Organophosphorus Compounds/toxicity , Oximes/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Animals , Atropine/pharmacology , Chemical Warfare Agents/toxicity , Cholinesterase Reactivators/chemistry , Erythrocytes/enzymology , Guinea Pigs , Linear Models , Male , Obidoxime Chloride/pharmacology , Organothiophosphorus Compounds/toxicity , Oximes/chemistry , Pralidoxime Compounds/pharmacology , Pyridinium Compounds/pharmacology , Sarin/toxicity , Structure-Activity Relationship
7.
J Mol Neurosci ; 30(1-2): 145-8, 2006.
Article in English | MEDLINE | ID: mdl-17192662

ABSTRACT

Current antidotal regimens for organophosphorus compound (OP) poisoning consist of a combination of pretreatment with a spontaneously reactivating AChE inhibitor such as pyridostigmine bromide, and postexposure therapy with anticholinergic drugs such as atropine sulfate and oximes such as 2-PAM chloride (Gray, 1984). Although these antidotal regimens are effective in preventing lethality of animals from OP poisoning, they do not prevent postexposure incapacitation, convulsions, performance deficits, or, in many cases, permanent brain damage (Dunn and Sidell, 1989). These problems stimulated the development of enzyme bioscavengers as a pretreatment to sequester highly toxic OPs before they reach their physiological targets. Several studies over the last two decades have demonstrated that exogenously administered human serum butyrylcholinesterase (Hu BChE) can be used successfully as a safe, efficacious, and single prophylactic treatment to counteract the toxicity of OPs. It also has potential use for first responders (civilians) reacting to terrorist nerve gas release, pesticide overexposure, or succinylcholine-induced apnea. A dose of 200 mg of Hu BChE in humans is envisioned as a prophylactic treatment that can protect from exposure of 2-5 x LD50 of nerve agents (Ashani, 2000).


Subject(s)
Antioxidants/pharmacology , Antitoxins/pharmacology , Butyrylcholinesterase/blood , Free Radical Scavengers/pharmacology , Organophosphates/toxicity , Animals , Butyrylcholinesterase/therapeutic use , Freeze Drying , Humans , Macaca mulatta , Rodentia , Safety
8.
Arch Toxicol ; 80(11): 756-60, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16770629

ABSTRACT

The hypothesis that acetylcholinesterase (AChE) inhibition is the mechanism of toxicity of organophosphorus (OP) compounds was examined by mathematically modeling the in vivo lethal effects of OP compounds and determining the amount of variation in OP toxicity that is explained by AChE inhibition. Mortality dose-response curves for several OP compounds (i.e., VX, soman, cyclosarin, sarin, tabun, diisopropylfluorophosphate and paraoxon) exhibited steep probit slopes (> 9.6) in guinea pigs. Steep probit slopes were also observed when the mortality dose-response curves for soman were examined in mice, rats, rabbits and non-human primates. The consistently steep probit slopes of the dose-response curves for highly toxic OP compounds suggested that these compounds have a single specific mechanism of toxicity regardless of the OP compound or the species in which it was tested. Regression analysis indicated that 93% of the 3,280-fold variation in the median lethal doses (i.e., LD(50)) of OP compounds in rats was explained by the variation in their in vitro rate constants for inhibition of AChE. Conversely, 91% of the 23-fold variation in the ability of the oximes pralidoxime and obidoxime to protect against the toxicity of OP compounds in guinea pigs was explained by the variation in the in vitro ability of oximes to reactivate OP-inhibited AChE. The best explanation for this variety of observations was that the primary mechanism of in vivo toxicity for highly toxic OP compounds is the inhibition of AChE, and the residual unexplained variation in OP toxicity that might be explained by other mechanisms represents < 10% of the total variation in OP toxicity.


Subject(s)
Cholinesterase Inhibitors/toxicity , Organophosphorus Compounds/toxicity , Animals , Cholinesterase Reactivators/pharmacology , Guinea Pigs , Lethal Dose 50 , Male , Mice , Mice, Inbred Strains , Models, Biological , Obidoxime Chloride/pharmacology , Pralidoxime Compounds/pharmacology , Rabbits , Rats , Rats, Sprague-Dawley
9.
Toxicol Mech Methods ; 16(7): 359-63, 2006.
Article in English | MEDLINE | ID: mdl-20021008

ABSTRACT

Preparation and analysis of tabun (GA) solutions are necessary for the continued development of countermeasures to this nerve agent. GA solutions must be stable and compatible for use in the test systems chosen for study; however, GA is very unstable in saline solutions. In the past we have found GA in saline at 2 mg/mL to be stable for a month or less at -70 degrees C, whereas saline solutions of sarin (GB), soman (GD), and cyclosarin (GF) were stable for many months. Previous studies have shown that Multisol (48.5% H(2)O, 40% propylene glycol, 10% ethanol, and 1.5% benzyl alcohol) provides stable solutions of GA. We confirmed the stability of GA in Multisol with phosphorus nuclear magnetic resonance (P horizontal line NMR) and developed a method for the analysis of GA in Multisol using gas chromatographic flame photometric detection (GCFPD) in the phosphorus mode. The GC method used acetonitrile (CH(3)CN) for a dilution solvent because of its miscibility with GA in chloroform (CHCl(3)) standards and GA in Multisol samples at 1% (v/v). Furthermore, the dilutions with CH(3)CN made the phosphorus mode interference peak present in CHCl(3) analytically manageable, reduced the interferences of Multisol in the GC separation, and contributed to a safe and reliable analysis of GA at 20 mug/mL. We demonstrated the stability of GA in Multisol stored for more than a year at 70 degrees C. This method contributes a suitable technique for the preparation and analysis of reliable solutions of GA in nerve agent medical research and demonstrates the extended stability of GA in Multisol.

10.
Chem Biol Interact ; 157-158: 205-10, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16289064

ABSTRACT

Human butyrylcholinesterase (HuBuChE), purified from outdated human plasma, is being evaluated for efficacy against nerve agents in guinea pigs and cynomolgus monkeys. Previous studies in rodents and nonhuman primates demonstrated that pretreatment of animals with enzymes that can scavenge nerve agents could provide significant protection against behavioral and lethal effects of nerve agent intoxication. In preparation for evaluation of efficacy of HuBuChE prior to initiating an investigational new drug (IND) application, the pharmacokinetics of HuBuChE were evaluated in guinea pigs and in cynomolgus monkeys. HuBuChE was injected intramuscularly (i.m.) at two doses, and blood samples were taken to follow the time-course of HuBuChE in blood for up to 168 h after administration. In guinea pigs, the two doses of HuBuChE, 19.9 and 32.5 mg/kg, produced similar times of maximal blood concentration (T(max) of 26.0 and 26.8 h, respectively) and similar elimination half-times (t(1/2) of 64.6 and 75.5 h, respectively). Enzyme levels were still 10-fold over baseline at 72 h. Based on these data, guinea pigs were administered 150 mg/kg of enzyme i.m. and challenged at T(max). Soman or VX doses were approximately 1.5, 2.0 and 2.0 x LD50 administered subcutaneously (s.c.) in sequence at 90-120 min apart. None of the animals displayed signs of organophosphorus (OP) anticholinesterase intoxication at any of the challenge levels, and all survived for the 14-day duration of the experiment. Similar experiments were carried out with cynomolgus monkeys to determine the pharmacokinetics of HuBuChE and its efficacy against soman. The complete survival of nearly all animals tested to date, coupled with the maximal blood concentration and half-life elimination profile obtained for HuBuChE after i.m. injection, provides strong support for the continued development of HuBuChE as a product to protect against nerve agents.


Subject(s)
Butyrylcholinesterase/pharmacology , Macaca fascicularis/metabolism , Organothiophosphorus Compounds/antagonists & inhibitors , Organothiophosphorus Compounds/poisoning , Animals , Butyrylcholinesterase/administration & dosage , Butyrylcholinesterase/pharmacokinetics , Guinea Pigs , Humans , Lethal Dose 50 , Male , Nervous System Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...