Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(4): 939-942, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32058511

ABSTRACT

Large mode area fibers have become indispensable in addressing the power requirements of laser sources in gravitational wave detectors. Besides high power capabilities, the system must provide an excellent beam quality and polarization. In this Letter, we present the characterization of a monolithic high-power fiber amplifier at 1064 nm, built using an ytterbium-doped chirally coupled-core fiber, which achieves an output power of 100 W in a linearly polarized $ {{\rm TEM}_{00}} $TEM00 mode in an all-fiber setup.

2.
Appl Opt ; 56(4): 928-934, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28158094

ABSTRACT

The measurement of fundamental mode bend loss is thoroughly studied in large-mode-area few-mode optical fibers. The influencing factors, including spectral properties of the light source, modal power content and cladding light, are experimentally investigated. Monte Carlo simulations are performed to help in understanding and illustrating the distribution of the variations. Practical guidelines and an example setup are provided for precise and accurate measurements.

3.
Appl Opt ; 49(22): 4139-43, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20676165

ABSTRACT

We examine the effect of photodarkening-induced pump light absorption on Yb-doped fiber thermal loading. In these experiments, the fiber is cladding pumped at 915nm, air cooled by natural convection, and monitored with a midinfrared thermal camera. The fiber temperature is found to correlate with progressive photodarkening. The maximum observed fiber temperature was 120 degrees C, recorded at a pump power of 10.5W. The observed increase in fiber temperature can be explained by a model that takes into account the combined effects of the Yb-silica quantum defect, the temperature dependence of the Yb-absorption cross section, and photodarkening-induced loss at 915nm. We hypothesize that the latter effect results in the progressive activation of temperature-dependent photochemical processes (e.g., bleaching) and is an important consideration with regard to the accurate modeling of Yb-doped fiber photodarkening kinetics.

4.
Appl Opt ; 47(25): 4522-8, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18758521

ABSTRACT

Yb-doped fibers are widely used in applications requiring high average output powers and high power pulse amplification. Photodarkening of the Yb-doped silicate glass core potentially limits the lifetime or efficiency of such fiber devices. In many studies of photodarkening, two principal methods of controllably inducing an inversion are used, namely, cladding pumping and core pumping of the sample. We present simulation results describing the key differences in the inversion profiles of samples of different physical parameters in these two cases, and we discuss the problems and possibilities that arise in benchmarking fibers of various physical parameters. Based on the simulation and experimental work, we propose guidelines for photodarkening benchmarking measurements and show examples of measurements made within and outside of the guidelines.

5.
Appl Opt ; 47(9): 1247-56, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-18709071

ABSTRACT

Yb-doped fibers are widely used in laser applications requiring high average output powers and high-peak-power pulse amplification. Photodarkening (PD) is recognized as one limiting factor in these fibers when pumped with high-intensity radiation. We describe an approach for performing quantitative PD studies of fibers, and we present measurements of the rate of PD in Yb-doped single-mode fibers with varying inversion levels. The method is applicable to large-mode-area fibers. We observed a seventh-order dependence of the PD rate on the excited-state Yb concentration for two different fibers; this result implies that PD of a Yb-doped fiber source fabricated using a particular fiber will be strongly dependent on the configuration of the device.

6.
Opt Express ; 14(24): 11539-44, 2006 Nov 27.
Article in English | MEDLINE | ID: mdl-19529573

ABSTRACT

Photodarkening is recognized as a potentially important limiting factor on the lifetime and reliability of many Yb-doped fiber lasers and amplifiers. In particular, a photodarkening process attributed to the formation of photoinduced structural transformations can induce excess loss in the doped glass core of the fiber, resulting in reduced output power efficiency. Yet, quantifiable measurement techniques of this phenomenon have been scarce in the literature to date. Here we present a fast, simple and repeatable method to measure and compare the photodarkening rate caused by the formation of photoinduced structural transformations from Yb-doped single-mode fibers. The method relies on quantifying observations of transmission changes at visible wavelengths as an indicative measure of photodarkening at the signal wavelengths. Preliminary measurement results are presented supporting the utility of the technique for benchmarking the photodarkening behavior of different Yb-doped fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...