Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 9(1): 37-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23143413

ABSTRACT

Human pathogens often produce soluble protein toxins that generate pores inside membranes, resulting in the death of target cells and tissue damage. In pathogenic amoebae, this has been exemplified with amoebapores of the enteric protozoan parasite Entamoeba histolytica. Here we characterize acanthaporin, to our knowledge the first pore-forming toxin to be described from acanthamoebae, which are free-living, bacteria-feeding, unicellular organisms that are opportunistic pathogens of increasing importance and cause severe and often fatal diseases. We isolated acanthaporin from extracts of virulent Acanthamoeba culbertsoni by tracking its pore-forming activity, molecularly cloned the gene of its precursor and recombinantly expressed the mature protein in bacteria. Acanthaporin was cytotoxic for human neuronal cells and exerted antimicrobial activity against a variety of bacterial strains by permeabilizing their membranes. The tertiary structures of acanthaporin's active monomeric form and inactive dimeric form, both solved by NMR spectroscopy, revealed a currently unknown protein fold and a pH-dependent trigger mechanism of activation.


Subject(s)
Acanthamoeba/chemistry , Protozoan Proteins/chemistry , Protozoan Proteins/physiology , Acanthamoeba/pathogenicity , Amino Acid Sequence , Dimerization , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Structure-Activity Relationship , Virulence
2.
J Biol Chem ; 287(11): 8434-43, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22262861

ABSTRACT

Dermcidin encodes the anionic amphiphilic peptide DCD-1L, which displays a broad spectrum of antimicrobial activity under conditions resembling those in human sweat. Here, we have investigated its mode of antimicrobial activity. We found that DCD-1L interacts preferentially with negatively charged bacterial phospholipids with a helix axis that is aligned flat on a lipid bilayer surface. Upon interaction with lipid bilayers DCD-1L forms oligomeric complexes that are stabilized by Zn(2+). DCD-1L is able to form ion channels in the bacterial membrane, and we propose that Zn(2+)-induced self-assembly of DCD-1L upon interaction with bacterial lipid bilayers is a prerequisite for ion channel formation. These data allow us for the first time to propose a molecular model for the antimicrobial mechanism of a naturally processed human anionic peptide that is active under the harsh conditions present in human sweat.


Subject(s)
Anti-Infective Agents/chemistry , Peptides/chemistry , Sweat/chemistry , Anti-Infective Agents/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Peptides/pharmacology , Phospholipids/chemistry , Phospholipids/metabolism , Protein Structure, Secondary , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Structure-Activity Relationship , Sweat/metabolism
3.
Channels (Austin) ; 5(4): 293-8, 2011.
Article in English | MEDLINE | ID: mdl-21558796

ABSTRACT

In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, such as those formed by Sec61 complexes in the ER membrane, would interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism of intracellular signaling. We identified a calmodulin (CaM) binding motif in the cytosolic N-terminus of Sec61α from Canis familiaris that binds CaM, but not Ca(2+)-free apo-CaM, with nanomolar affinity and sequence specificity. In single channel lipid bilayer measurements, CaM potently mediated Sec61-channel closure in a Ca(2+)-dependent manner. No functional CaM binding motif was identified in the corresponding region of Sec61p from Saccharomyces cerevisiae, and no channel closure occurred in the presence of CaM and Ca(2+). Therefore, CaM binding to the cytosolic N-terminus of Sec61α is involved in limiting Ca(2+)-leakage from the ER in C. familiaris but not S. cerevisiae.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Lipid Bilayers/metabolism , Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Motifs , Animals , Calcium/chemistry , Cytosol/metabolism , Dogs , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Intracellular Membranes/chemistry , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , SEC Translocation Channels , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Species Specificity
4.
EMBO J ; 30(1): 17-31, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21102557

ABSTRACT

In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, as formed by Sec61 complexes in the ER membrane, would seriously interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism for intracellular signalling. We identified a calmodulin (CaM)-binding motif in the cytosolic N-terminus of mammalian Sec61α that bound CaM but not Ca2+-free apocalmodulin with nanomolar affinity and sequence specificity. In single-channel measurements, CaM potently mediated Sec61-channel closure in Ca2+-dependent manner. At the cellular level, two different CaM antagonists stimulated calcium release from the ER through Sec61 channels. However, protein transport into microsomes was not modulated by Ca2+-CaM. Molecular modelling of the ribosome/Sec61/CaM complexes supports the view that simultaneous ribosome and CaM binding to the Sec61 complex may be possible. Overall, CaM is involved in limiting Ca2+ leakage from the ER.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , HeLa Cells , Humans , Membrane Proteins/chemistry , Microsomes/metabolism , Molecular Sequence Data , Protein Subunits/chemistry , Protein Subunits/metabolism , Protein Transport , SEC Translocation Channels , Wolves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...