Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Physiol ; 6(2): 603-21, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-27065163

ABSTRACT

The hypothalamo-pituitary-adrenocortical (HPA) axis is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem) and promote transsynaptic inhibition by limbic structures (e.g., hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, and even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency, and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic, and brainstem circuits. Importantly, an individual's response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex, and age. The context in which stressors occur will determine whether an individual's acute or chronic stress responses are adaptive or maladaptive (pathological).


Subject(s)
Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Stress, Physiological , Animals , Glucocorticoids/metabolism , Homeostasis , Humans , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
2.
Physiol Behav ; 122: 246-52, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23707717

ABSTRACT

Stress pathology is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and aberrant glucocorticoid responses. Recent studies indicate increases in prefrontal cortical ionized calcium-binding adapter molecule 1 (Iba-1) staining following repeated restraint, reflecting increased microglial densities. Our experiments tested expression of Iba-1 staining in the prelimbic cortex (PL), infralimbic cortex (IL) and the hypothalamic paraventricular nucleus (PVN) following two-week exposure to repeated restraint (RR) and chronic variable stress (CVS), representing homotypic and heterotypic regimens, respectively. Unstressed animals served as controls. We specifically examined Iba-1 immunofluorescence in layers 2 and 3 versus layers 5 and 6 of the PL and IL, using both cell number and field staining density. Iba-1 field staining density was increased in both the PL and IL following RR in comparison to controls. This effect was not observed following CVS. Furthermore, PVN Iba-1 immunoreactivity was not affected by either stress regimen. Cell number did not vary within any brain areas or across stress exposures. Changes in microglial field density did not reflect changes in vascular density. Increases in PL and IL microglial density indicate selective microglial activation during RR, perhaps due to mild stress in the context of limited elevations in anti-inflammatory glucocorticoid actions. This research was supported by NIH grants [MH049698 and MH069860].


Subject(s)
Hypothalamo-Hypophyseal System/metabolism , Microglia/metabolism , Pituitary-Adrenal System/metabolism , Prefrontal Cortex/metabolism , Stress, Physiological/physiology , Animals , Male , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...