Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Cell Metab ; 35(12): 2119-2135.e5, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37913768

ABSTRACT

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Subject(s)
Carcinoma in Situ , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulins , Pancreatic Neoplasms , Mice , Animals , Proto-Oncogene Proteins p21(ras)/metabolism , Receptor, Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Pancreatic Neoplasms/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Inflammation/metabolism , Hyperinsulinism/complications , Metaplasia/metabolism , Metaplasia/pathology , Obesity/metabolism , Insulins/metabolism
2.
Elife ; 122023 08 23.
Article in English | MEDLINE | ID: mdl-37610090

ABSTRACT

Pancreatic islets are three-dimensional cell aggregates consisting of unique cellular composition, cell-to-cell contacts, and interactions with blood vessels. Cell aggregation is essential for islet endocrine function; however, it remains unclear how developing islets establish aggregation. By combining genetic animal models, imaging tools, and gene expression profiling, we demonstrate that islet aggregation is regulated by extracellular matrix signaling and cell-cell adhesion. Islet endocrine cell-specific inactivation of extracellular matrix receptor integrin ß1 disrupted blood vessel interactions but promoted cell-cell adhesion and the formation of larger islets. In contrast, ablation of cell-cell adhesion molecule α-catenin promoted blood vessel interactions yet compromised islet clustering. Simultaneous removal of integrin ß1 and α-catenin disrupts islet aggregation and the endocrine cell maturation process, demonstrating that establishment of islet aggregates is essential for functional maturation. Our study provides new insights into understanding the fundamental self-organizing mechanism for islet aggregation, architecture, and functional maturation.


Subject(s)
Extracellular Matrix , Integrin beta1 , Animals , Cell Adhesion , alpha Catenin , Cell Aggregation
3.
Islets ; 15(1): 2219477, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37258189

ABSTRACT

Previous studies indicated that ductal cells can contribute to endocrine neogenesis in adult rodents after alpha cells convert into beta cells. This can occur through Pax4 mis-expression in alpha cells or through long-term administration of gamma-aminobutyric acid (GABA) to healthy mice. GABA has also been reported to increase the number of beta cells through direct effects on their proliferation, but only in specific genetic mouse backgrounds. To test whether GABA induces neogenesis of beta cells from ductal cells or affects pancreatic cell proliferation, we administered GABA or saline over 2 or 6 months to Sox9CreER;R26RYFP mice in which 60-80% of large or small ducts were efficiently lineage labeled. We did not observe any increases in islet neogenesis from ductal cells between 1 and 2 months of age in saline treated mice, nor between 2 and 6 months of saline treatment, supporting previous studies indicating that adult ductal cells do not give rise to new endocrine cells during homeostasis. Unlike previous reports, we did not observe an increase in beta cell neogenesis after 2 or 6 months of GABA administration. Nor did we observe a significant increase in the pancreatic islet area, the number of insulin and glucagon double positive cells, or cell proliferation in the pancreas. This indicates that the effect of long term GABA administration on the pancreas is minimal or highly context dependent.


Subject(s)
Endocrine Cells , Glucagon-Secreting Cells , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Pancreatic Ducts , gamma-Aminobutyric Acid/pharmacology
5.
Diabetes ; 72(4): 433-448, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36940317

ABSTRACT

The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Subject(s)
Diabetes Mellitus , Islets of Langerhans , Pancreas, Exocrine , Pancreatic Diseases , Humans , Diabetes Mellitus/metabolism , Pancreas , Pancreatic Diseases/metabolism
6.
Mol Metab ; 68: 101667, 2023 02.
Article in English | MEDLINE | ID: mdl-36621763

ABSTRACT

OBJECTIVES: Pancreatic cancer risk is elevated approximately two-fold in type 1 and type 2 diabetes. Islet amyloid polypeptide (IAPP) is an abundant beta-cell peptide hormone that declines with diabetes progression. IAPP has been reported to act as a tumour-suppressor in p53-deficient cancers capable of regressing tumour volumes. Given the decline of IAPP during diabetes development, we investigated the actions of IAPP in pancreatic ductal adenocarcinoma (PDAC; the most common form of pancreatic cancer) to determine if IAPP loss in diabetes may increase the risk of pancreatic cancer. METHODS: PANC-1, MIA PaCa-2, and H1299 cells were treated with rodent IAPP, and the IAPP analogs pramlintide and davalintide, and assayed for changes in proliferation, death, and glycolysis. An IAPP-deficient mouse model of PDAC (Iapp-/-; Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER) was generated for survival analysis. RESULTS: IAPP did not impact glycolysis in MIA PaCa-2 cells, and did not impact cell death, proliferation, or glycolysis in PANC-1 cells or in H1299 cells, which were previously reported as IAPP-sensitive. Iapp deletion in Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER mice had no effect on survival time to lethal tumour burden. CONCLUSIONS: In contrast to previous reports, we find that IAPP does not function as a tumour suppressor. This suggests that loss of IAPP signalling likely does not increase the risk of pancreatic cancer in individuals with diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Pancreatic Neoplasms , Mice , Animals , Islet Amyloid Polypeptide/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
7.
Visc Med ; 38(1): 4-10, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35295896

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease that has no effective early detection method or treatment to date. Summary: The normal cell type that initiates PDAC, or its cellular origin, is still unknown. To investigate the contribution of distinct normal epithelial cell types to PDAC tumorigenesis, genetically engineered mouse models were used to show that both acinar and ductal cells are capable of giving rise to PDAC. These studies indicated that genetic mutations and pancreatic injury interact differently with each cellular origin to affect their predilection and process for forming PDAC. In this review, we summarize recent findings using various genetically engineered mouse models in the identification and characterization of the PDAC cell of origin. We also discuss potential implications for cellular origin on tumor development, PDAC transcriptional subtype, and disease prognosis of patients. Key Message: Although it is clear that both ductal and acinar cells have the potential to form PDAC, whether cellular origin can indeed influence patient prognosis and whether knowledge of cellular origin will aid in the diagnosis or treatment of patients in the future will need further study.

8.
Cancer Metab ; 10(1): 5, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35189981

ABSTRACT

BACKGROUND: Hyperinsulinemia is independently associated with increased risk and mortality of pancreatic cancer. We recently reported that genetically reduced insulin production resulted in ~ 50% suppression of pancreatic intraepithelial neoplasia (PanIN) precancerous lesions in mice. However, only female mice remained normoglycemic, and only the gene dosage of the rodent-specific Ins1 alleles was tested in our previous model. Moreover, we did not delve into the molecular and cellular mechanisms associated with modulating hyperinsulinemia. METHODS: We studied how reduced Ins2 gene dosage affects PanIN lesion development in both male and female Ptf1aCreER;KrasLSL-G12D mice lacking the rodent-specific Ins1 gene (Ins1-/-). We generated control mice having two alleles of the wild-type Ins2 gene (Ptf1aCreER;KrasLSL-G12D;Ins1-/-;Ins2+/+) and experimental mice having one allele of Ins2 gene (Ptf1aCreER;KrasLSL-G12D;Ins1-/-;Ins2+/-). We then performed thorough histopathological analyses and single-cell transcriptomics for both genotypes and sexes. RESULTS: High-fat diet-induced hyperinsulinemia was transiently or modestly reduced in female and male mice, respectively, with only one allele of Ins2. This occurred without dramatically affecting glucose tolerance. Genetic reduction of insulin production resulted in mice with a tendency for less PanIN and acinar-to-ductal metaplasia (ADM) lesions. Using single-cell transcriptomics, we found hyperinsulinemia affected multiple cell types in the pancreas, with the most statistically significant effects on local immune cell types that were highly represented in our sampled cell population. Specifically, hyperinsulinemia modulated pathways associated with protein translation, MAPK-ERK signaling, and PI3K-AKT signaling, which were changed in epithelial cells and subsets of immune cells. CONCLUSIONS: These data suggest a potential role for the immune microenvironment in hyperinsulinemia-driven PanIN development. Together with our previous work, we propose that mild suppression of insulin levels may be useful in preventing pancreatic cancer by acting on multiple cell types.

9.
Pancreas ; 51(9): 1061-1073, 2022 10 01.
Article in English | MEDLINE | ID: mdl-37078927

ABSTRACT

ABSTRACT: The "Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases" Workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report summarizes the workshop proceedings. The goal of the workshop was to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into 6 major themes, including (a) Pancreas Anatomy and Physiology; (b) Diabetes in the Setting of Exocrine Disease; (c) Metabolic Influences on the Exocrine Pancreas; (d) Genetic Drivers of Pancreatic Diseases; (e) Tools for Integrated Pancreatic Analysis; and (f) Implications of Exocrine-Endocrine Crosstalk. For each theme, there were multiple presentations followed by panel discussions on specific topics relevant to each area of research; these are summarized herein. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of the normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Subject(s)
Diabetes Mellitus , Islets of Langerhans , Pancreas, Exocrine , Pancreatic Diseases , Humans , Diabetes Mellitus/therapy , Diabetes Mellitus/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Pancreas, Exocrine/metabolism , Pancreatic Diseases/diagnosis , Pancreatic Diseases/therapy , Pancreatic Diseases/metabolism
10.
Cell Rep Med ; 2(11): 100434, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34841287

ABSTRACT

miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, ß-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of ß-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-ß signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how ß-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.


Subject(s)
Disease Progression , Gene Deletion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Base Sequence , Cell Line, Tumor , Cell Movement , Diet, High-Fat , Humans , Insulin Secretion , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Organ Specificity , Rats
12.
Diabetes Metab J ; 45(3): 285-311, 2021 05.
Article in English | MEDLINE | ID: mdl-33775061

ABSTRACT

The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Neoplasms , Diabetes Mellitus, Type 2/complications , Humans , Hyperinsulinism/complications , Inflammation/complications , Neoplasms/complications , Neoplasms/epidemiology , Obesity/complications
13.
Cancer Discov ; 11(3): 638-659, 2021 03.
Article in English | MEDLINE | ID: mdl-33060108

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/metabolism , DNA Methylation , Interferons/metabolism , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Repetitive Sequences, Nucleic Acid , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , CpG Islands , Disease Progression , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Reproducibility of Results , Signal Transduction , Transcriptome , Tumor Microenvironment/genetics
14.
Cell Death Dis ; 11(3): 187, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179733

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is associated with metaplastic changes in the pancreas but the transcriptional program underlying these changes is incompletely understood. The zinc finger transcription factor, PRDM3, is lowly expressed in normal pancreatic acini and its expression increases during tumorigenesis. Although PRDM3 promotes proliferation and migration of PDAC cell lines, the role of PRDM3 during tumor initiation from pancreatic acinar cells in vivo is unclear. In this study, we showed that high levels of PRDM3 expression in human pancreas was associated with pancreatitis, and well-differentiated but not poorly differentiated carcinoma. We examined PRDM3 function in pancreatic acinar cells during tumor formation and pancreatitis by inactivating Prdm3 using a conditional allele (Ptf1aCreER;Prdm3flox/flox mice) in the context of oncogenic Kras expression and supraphysiological cerulein injections, respectively. In Prdm3-deficient mice, KrasG12D-driven preneoplastic lesions were more abundant and progressed to high-grade precancerous lesions more rapidly. This is consistent with our observations that low levels of PRDM3 in human PDAC was correlated significantly with poorer survival in patient. Moreover, loss of Prdm3 in acinar cells elevated exocrine injury, enhanced immune cell activation and infiltration, and greatly increased acinar-to-ductal cell reprogramming upon cerulein-induced pancreatitis. Whole transcriptome analyses of Prdm3 knockout acini revealed that pathways involved in inflammatory response and Hif-1 signaling were significantly upregulated in Prdm3-depleted acinar cells. Taken together, our results suggest that Prdm3 favors the maintenance of acinar cell homeostasis through modulation of their response to inflammation and oncogenic Kras activation, and thus plays a previously unexpected suppressive role during PDAC initiation.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , MDS1 and EVI1 Complex Locus Protein/metabolism , Pancreatitis/genetics , Animals , Disease Models, Animal , Humans , Mice , Middle Aged
16.
Cell Mol Gastroenterol Hepatol ; 8(4): 579-594, 2019.
Article in English | MEDLINE | ID: mdl-31310834

ABSTRACT

BACKGROUND & AIMS: Activating mutation of the KRAS gene is common in some cancers, such as pancreatic cancer, but rare in other cancers. Chronic pancreatitis is a predisposing condition for pancreatic ductal adenocarcinoma (PDAC), but how it synergizes with KRAS mutation is not known. METHODS: We used a mouse model to express an activating mutation of Kras in conjunction with obstruction of the main pancreatic duct to recapitulate a common etiology of human chronic pancreatitis. Because the cell of origin of PDAC is not clear, Kras mutation was introduced into either duct cells or acinar cells. RESULTS: Although KrasG12D expression in both cell types was protective against damage-associated cell death, chronic pancreatitis induced p53, p21, and growth arrest only in acinar-derived cells. Mutant duct cells did not elevate p53 or p21 expression and exhibited increased proliferation driving the appearance of PDAC over time. CONCLUSIONS: One mechanism by which tissues may be susceptible or resistant to KRASG12D-initiated tumorigenesis is whether they undergo a p53-mediated damage response. In summary, we have uncovered a mechanism by which inflammation and intrinsic cellular programming synergize for the development of PDAC.


Subject(s)
Pancreatitis, Chronic/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Acinar Cells/metabolism , Animals , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic , Disease Models, Animal , Genes, ras , Metaplasia , Mice , Mutation , Pancreatic Neoplasms/pathology , Pancreatitis, Chronic/genetics , Precancerous Conditions/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Pancreatic Neoplasms
17.
Gut ; 68(3): 487-498, 2019 03.
Article in English | MEDLINE | ID: mdl-29363536

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumour thought to arise from ductal cells via pancreatic intraepithelial neoplasia (PanIN) precursor lesions. Modelling of different genetic events in mice suggests both ductal and acinar cells can give rise to PDAC. However, the impact of cellular context alone on tumour development and phenotype is unknown. DESIGN: We examined the contribution of cellular origin to PDAC development by inducing PDAC-associated mutations, KrasG12D expression and Trp53 loss, specifically in ductal cells (Sox9CreER;KrasLSL-G12D;Trp53flox/flox ('Duct:KPcKO ')) or acinar cells (Ptf1aCreER;KrasLSL-G12D;Trp53flox/flox ('Acinar:KPcKO ')) in mice. We then performed a thorough analysis of the resulting histopathological changes. RESULTS: Both mouse models developed PDAC, but Duct:KPcKO mice developed PDAC earlier than Acinar:KPcKO mice. Tumour development was more rapid and associated with high-grade murine PanIN (mPanIN) lesions in Duct:KPcKO mice. In contrast, Acinar:KPcKO mice exhibited widespread metaplasia and low-grade as well as high-grade mPanINs with delayed progression to PDAC. Acinar-cell-derived tumours also had a higher prevalence of mucinous glandular features reminiscent of early mPanIN lesions. CONCLUSION: These findings indicate that ductal cells are primed to form carcinoma in situ that become invasive PDAC in the presence of oncogenic Kras and Trp53 deletion, while acinar cells with the same mutations appear to require a prolonged period of transition or reprogramming to initiate PDAC. Our findings illustrate that PDAC can develop in multiple ways and the cellular context in which mutations are acquired has significant impact on precursor lesion initiation, disease progression and tumour phenotype.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neoplasm Grading , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phenotype , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Time Factors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
Dev Dyn ; 247(6): 854-866, 2018 06.
Article in English | MEDLINE | ID: mdl-29532564

ABSTRACT

BACKGROUND: The plasticity of pancreatic acinar cells to undergo acinar to ductal metaplasia (ADM) has been demonstrated to contribute to the regeneration of the pancreas in response to injury. Sox9 is critical for ductal cell fate and important in the formation of ADM, most likely in concert with a complex hierarchy of, as yet, not fully elucidated transcription factors. RESULTS: By using a mouse model of acute pancreatitis and three dimensional organoid culture of primary pancreatic ductal cells, we herein characterize the Ets-transcription factor Etv5 as a pivotal regulator of ductal cell identity and ADM that acts upstream of Sox9 and is essential for Sox9 expression in ADM. Loss of Etv5 is associated with increased severity of acute pancreatitis and impaired ADM formation leading to delayed tissue regeneration and recovery in response to injury. CONCLUSIONS: Our data provide new insights in the regulation of ADM with implications in our understanding of pancreatic homeostasis, pancreatitis and epithelial plasticity. Developmental Dynamics 247:854-866, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
DNA-Binding Proteins/metabolism , Pancreatic Ducts/metabolism , Pancreatic Ducts/physiology , Pancreatitis/metabolism , SOX9 Transcription Factor/metabolism , Transcription Factors/metabolism , Acinar Cells/cytology , Acinar Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , DNA-Binding Proteins/genetics , Mice , Mice, Knockout , Pancreas/embryology , Pancreas/metabolism , Pancreatitis/genetics , SOX9 Transcription Factor/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics
20.
Gastroenterology ; 154(5): 1509-1523.e5, 2018 04.
Article in English | MEDLINE | ID: mdl-29273451

ABSTRACT

BACKGROUND & AIMS: Intraductal papillary mucinous neoplasias (IPMNs) are precancerous cystic lesions that can develop into pancreatic ductal adenocarcinomas (PDACs). These large macroscopic lesions are frequently detected during medical imaging, but it is unclear how they form or progress to PDAC. We aimed to identify cells that form IPMNs and mutations that promote IPMN development and progression. METHODS: We generated mice with disruption of Pten specifically in ductal cells (Sox9CreERT2;Ptenflox/flox;R26RYFP or PtenΔDuct/ΔDuct mice) and used PtenΔDuct/+ and Pten+/+ mice as controls. We also generated KrasG12D;PtenΔDuct/ΔDuct and KrasG12D;PtenΔDuct/+ mice. Pancreata were collected when mice were 28 weeks to 14.5 months old and analyzed by histology, immunohistochemistry, and electron microscopy. We performed multiplexed droplet digital polymerase chain reaction to detect spontaneous Kras mutations in PtenΔDuct/ΔDuct mice and study the effects of Ras pathway activation on initiation and progression of IPMNs. We obtained 2 pancreatic sections from a patient with an invasive pancreatobiliary IPMN and analyzed the regions with and without the invasive IPMN (control tissue) by immunohistochemistry. RESULTS: Mice with ductal cell-specific disruption of Pten but not control mice developed sporadic, macroscopic, intraductal papillary lesions with histologic and molecular features of human IPMNs. PtenΔDuct/ΔDuct mice developed IPMNs of several subtypes. In PtenΔDuct/ΔDuct mice, 31.5% of IPMNs became invasive; invasion was associated with spontaneous mutations in Kras. KrasG12D;PtenΔDuct/ΔDuct mice all developed invasive IPMNs within 1 month. In KrasG12D;PtenΔDuct/+ mice, 70% developed IPMN, predominately of the pancreatobiliary subtype, and 63.3% developed PDAC. In all models, IPMNs and PDAC expressed the duct-specific lineage tracing marker yellow fluorescent protein. In immunohistochemical analyses, we found that the invasive human pancreatobiliary IPMN tissue had lower levels of PTEN and increased levels of phosphorylated (activated) ERK compared with healthy pancreatic tissue. CONCLUSIONS: In analyses of mice with ductal cell-specific disruption of Pten, with or without activated Kras, we found evidence for a ductal cell origin of IPMNs. We also showed that PTEN loss and activated Kras have synergistic effects in promoting development of IPMN and progression to PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Cell Transformation, Neoplastic/metabolism , Neoplasms, Cystic, Mucinous, and Serous/enzymology , PTEN Phosphohydrolase/deficiency , Pancreatic Ducts/enzymology , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Lineage , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Progression , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neoplasm Invasiveness , Neoplasms, Cystic, Mucinous, and Serous/genetics , Neoplasms, Cystic, Mucinous, and Serous/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...