Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 23(14): 145401, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21430308

ABSTRACT

Advantage is taken of the wealth of experimental data relating to the evolution with temperature of spin states of Co(3+) in LaCoO3 in order to undertake a detailed investigation of the mechanisms by which changes in electronic structure can influence strain, and elastic and anelastic relaxations in perovskites. The macroscopic strain accompanying changes in the spin state in LaCoO3 is predominantly a volume strain arising simply from the change in effective ionic radius of the Co(3+) ions. This acts to renormalize the octahedral tilting transition temperature in a manner that is easily understood in terms of coupling between the tilt and spin order parameters. Results from resonant ultrasound spectroscopy at high frequencies (0.1-1.5 MHz) reveal stiffening of the shear modulus which scales qualitatively with a spin order parameter defined in terms of changing Co-O bond lengths. From this finding, in combination with results from dynamic mechanical analysis at low frequencies (0.1-50 Hz) and data from the literature, four distinctive anelastic relaxation mechanisms are identified. The relaxation times of these are displayed on an anelasticity map and are tentatively related to spin-spin relaxation, spin-lattice relaxation, migration of twin walls and migration of magnetic polarons. The effective activation energy for the freezing of twin wall motion below ~590 K at low frequencies was found to be 182 ± 21 kJ mol(-1) (1.9 ± 0.2 eV) which is attributed to pinning by pairs of oxygen vacancies, though the local mechanisms appear to have a spread of relaxation times. It seems inevitable that twin walls due to octahedral tilting must have quite different characteristics from the matrix in terms of local spin configurations of Co(3+). A hysteresis in the elastic properties at high temperatures further emphasizes the importance of oxygen content in controlling the properties of LaCoO3.

2.
J Phys Condens Matter ; 22(29): 295401, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-21399303

ABSTRACT

Anelastic loss mechanisms associated with phase transitions in SrZr(1-x)Ti(x)O(3) perovskites (x = 0.375, 0.450, 0.550, 0.775) have been investigated by dynamic mechanical analysis between 128 and 723 K at frequencies of 0.1-50 Hz. Distinctive patterns of changes in the elastic moduli due to octahedral tilting transitions correlate closely with data for the shear modulus obtained previously by resonant ultrasound spectroscopy at high frequencies (∼0.5 MHz). The I4/mcm <--> Imma transition is first order and has a characteristic minimum in the shear modulus and Young's modulus. For x = 0.450 and 0.550, a dissipation peak occurs at the transition temperature, the maximum of which varies with frequency according to a power law relationship of the form tanδ = Af(n), with n≈ - 0.3. Debye-like dissipation peaks in the stability field of the Imma structure at x = 0.375 have a frequency and temperature dependence consistent with twin wall pinning by defects with an activation energy ∼ 184 kJ mol(-1). These results indicate that there is diversity of pinning and relaxation processes for transformation twin walls and interfaces in different perovskites with I4/mcm, Imma and Pnma structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...