Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(11): 2344-2358.e5, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38781954

ABSTRACT

Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.


Subject(s)
Hordeum , Inflorescence , Meristem , Plant Proteins , Signal Transduction , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Meristem/growth & development , Meristem/genetics , Meristem/metabolism , Inflorescence/growth & development , Inflorescence/genetics , Inflorescence/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
J Exp Bot ; 75(10): 2900-2916, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38366171

ABSTRACT

The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.


Subject(s)
Hordeum , Plant Proteins , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38407464

ABSTRACT

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Subject(s)
Hordeum , Plant Vascular Bundle , Hordeum/anatomy & histology , Hordeum/growth & development , Hordeum/physiology , Plant Vascular Bundle/anatomy & histology , Plant Vascular Bundle/physiology , Plant Vascular Bundle/growth & development , Biological Transport , Inflorescence/anatomy & histology , Inflorescence/growth & development , Inflorescence/physiology
4.
Breed Sci ; 73(1): 46-56, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37168815

ABSTRACT

Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.

5.
Curr Opin Plant Biol ; 65: 102168, 2022 02.
Article in English | MEDLINE | ID: mdl-35016076

ABSTRACT

Grasses are ubiquitous in our daily lives, with gramineous cereal crops such as maize, rice, and wheat constituting a large proportion of our daily staple food intake. Evolutionary forces, especially over the past ∼20 million years, have shaped grass adaptability, inflorescence architecture, and reproductive success. Here, we provide basic information on grass evolution and inflorescence structures mainly related to two inflorescence types: branched panicle- and spike-type inflorescences, the latter of which has highly modified branching. We summarize and compare known genetic pathways underlying each infloresecence type and discuss how the maize RAMOSA, rice ABERRANT PANICLE ORGANIZATION, and Triticeae COMPOSITUM pathways are regulated. Our analyses might lay the foundation for understanding species-specific gene regulatory networks that could result in improved sink capacities.


Subject(s)
Inflorescence , Oryza , Crops, Agricultural/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Inflorescence/genetics , Inflorescence/metabolism , Meristem/genetics , Oryza/genetics , Plant Proteins/metabolism , Poaceae/genetics , Poaceae/metabolism , Triticum/genetics , Zea mays/metabolism
6.
Theor Appl Genet ; 135(2): 571-590, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34773464

ABSTRACT

KEY MESSAGE: Spikelet indeterminacy and supernumerary spikelet phenotypes in barley multiflorus2.b mutant show polygenic inheritance. Genetic analysis of multiflorus2.b revealed major QTLs for spikelet determinacy and supernumerary spikelet phenotypes on 2H and 6H chromosomes. Understanding the genetic basis of yield forming factors in small grain cereals is of extreme importance, especially in the wake of stagnation of further yield gains in these crops. One such yield forming factor in these cereals is the number of grain-bearing florets produced per spikelet. Wild-type barley (Hordeum vulgare L.) spikelets are determinate structures, and the spikelet axis (rachilla) degenerates after producing single floret. In contrast, the rachilla of wheat (Triticum ssp.) spikelets, which are indeterminate, elongates to produce up to 12 florets. In our study, we characterized the barley spikelet determinacy mutant multiflorus2.b (mul2.b) that produced up to three fertile florets on elongated rachillae of lateral spikelets. Apart from the lateral spikelet indeterminacy (LS-IN), we also characterized the supernumerary spikelet phenotype in the central spikelets (CS-SS) of mul2.b. Through our phenotypic and genetic analyses, we identified two major QTLs on chromosomes 2H and 6H, and two minor QTLs on 3H for the LS-IN phenotype. For, the CS-SS phenotype, we identified one major QTL on 6H, and a minor QTL on 5H chromosomes. Notably, the 6H QTLs for CS-SS and LS-IN phenotypes co-located with each other, potentially indicating that a single genetic factor might regulate both phenotypes. Thus, our in-depth phenotyping combined with genetic analyses revealed the quantitative nature of the LS-IN and CS-SS phenotypes in mul2.b, paving the way for cloning the genes underlying these QTLs in the future.


Subject(s)
Hordeum , Edible Grain/genetics , Genetic Variation , Hordeum/genetics , Quantitative Trait Loci , Triticum/genetics
7.
J Exp Bot ; 72(22): 7754-7768, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34460900

ABSTRACT

Gaining knowledge on fundamental interactions of various yield components is crucial to improve yield potential in small grain cereals. It is well known in barley that increasing grain number greatly improves yield potential; however, the yield components determining grain number and their association in barley row types are less explored. In this study, we assessed different yield components such as potential spikelet number (PSN), spikelet survival (SSL), spikelet number (SN), grain set (GS), and grain survival (GSL), as well as their interactions with grain number by using a selected panel of two- and six-rowed barley types. Also, to analyze the stability of these interactions, we performed the study in the greenhouse and the field. From this study, we found that in two-rowed barley, grain number determination is strongly influenced by PSN rather than SSL and/or GS in both growth conditions. Conversely, in six-rowed barley, grain number is associated with SSL instead of PSN and/or GS. Thus, our study showed that increasing grain number might be possible by augmenting PSN in two-rowed genotypes, while for six-rowed genotypes SSL needs to be improved. We speculate that this disparity of grain number determination in barley row types might be due to the fertility of lateral spikelets. Collectively, this study revealed that grain number in two-rowed barley largely depends on the developmental trait, PSN, while in six-rowed barley, it mainly follows the ability for SSL.


Subject(s)
Hordeum , Edible Grain , Genotype , Hordeum/genetics , Phenotype
8.
Nat Commun ; 11(1): 5138, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046693

ABSTRACT

Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. Here, we identify the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressing in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in barley (Triticeae) versus branch-formation in non-Triticeae grasses. Analyses of cell size, cell walls and transcripts reveal barley COM1 regulates cell growth, thereby affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless1 and confers meristem identity partially independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity pathway has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae.


Subject(s)
Hordeum/metabolism , Inflorescence/growth & development , Meristem/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Hordeum/genetics , Hordeum/growth & development , Inflorescence/genetics , Inflorescence/metabolism , Meristem/genetics , Meristem/growth & development , Plant Proteins/genetics , Signal Transduction
9.
Indian J Med Microbiol ; 38(2): 144-151, 2020.
Article in English | MEDLINE | ID: mdl-32883926

ABSTRACT

CONTEXT: Coronavirus disease 2019 (CoViD 19) pandemic has induced the government to initiate strict control measures. Improvements to these measures and shortcomings could be gleaned with the understanding of the knowledge, attitude and practices (KAP) of the public. AIMS: The aim of this study the CoViD 19 KAP of a south Indian state population. SETTINGS AND DESIGN: This was a Cross-sectional observational study. SUBJECTS AND METHODS: We conducted an online survey to elicit this information. STATISTICAL ANALYSIS USED: Mean, Standard deviation, Binomial and Multinomial logistic regression. RESULTS: Of the 1837 subjects who answered the survey, 70% were youth (16-29 years), 54% were postgraduates and 47.8% were desk jobholders. The mean knowledge score was 9.92 ± 2.37/14 and 94.44% secured at least above-average score. The subjects had a positive (70%) attitude towards the CoViD 19 situation and 77% of subjects followed good preventive practices. However, we found that women, people with low education and nonmedical background were associated with poor knowledge and practices. The attitude was poor in subjects occupant in physical works. CONCLUSIONS: The health policy would better serve the purpose of the groups with poor scores are targeted.


Subject(s)
Betacoronavirus/pathogenicity , Communicable Disease Control/organization & administration , Coronavirus Infections/epidemiology , Health Knowledge, Attitudes, Practice , Pandemics , Pneumonia, Viral/epidemiology , Quarantine/psychology , Adolescent , Adult , COVID-19 , Communicable Disease Control/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Cross-Sectional Studies , Female , Humans , India/epidemiology , Male , Middle Aged , Occupations , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Sex Factors , Surveys and Questionnaires
10.
Theor Appl Genet ; 133(9): 2759, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32696169

ABSTRACT

While continuing our quest towards the identification of the labile (lab) locus in barley, we discovered that the previously assigned map location on the long arm of chromosome 5H was wrong.

11.
Sci Rep ; 9(1): 13853, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554871

ABSTRACT

We dissected the genetic basis of total spikelet number (TSN) along with other traits, viz. spike length (SL) and flowering time (FT) in a panel of 518 elite European winter wheat varieties. Genome-wide association studies (GWAS) based on 39,908 SNP markers revealed highly significant quantitative trait loci (QTL) for TSN on chromosomes 2D, 7A, and 7B, for SL on 5A, and FT on 2D, with 2D-QTL being the functional marker for the gene Ppd-D1. The physical region of the 7A-QTL for TSN revealed the presence of a wheat ortholog (TaAPO-A1) to APO1-a rice gene that positively controls the spikelet number on the panicles. Interspecific analyses of the TaAPO-A1 orthologs showed that it is a highly conserved gene important for floral development and present in a wide range of terrestrial plants. Intraspecific studies of the TaAPO-A1 across wheat genotypes revealed a polymorphism in the conserved F-box domain, defining two haplotypes. A KASP marker developed on the polymorphic site showed a highly significant association of TaAPO-A1 with TSN, explaining 23.2% of the total genotypic variance. Also, the TaAPO-A1 alleles showed weak but significant differences for SL and grain yield. Our results demonstrate the importance of wheat sequence resources to identify candidate genes for important traits based on genetic analyses.


Subject(s)
Plant Proteins/genetics , Triticum/genetics , Chromosomes, Plant/genetics , Genes, Plant/genetics , Genetic Markers , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Oryza/genetics , Polymorphism, Single Nucleotide/genetics , Polyploidy , Quantitative Trait Loci/genetics , Triticum/anatomy & histology , Triticum/growth & development
12.
J Integr Plant Biol ; 61(3): 278-295, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30609316

ABSTRACT

Grass species display a wide array of inflorescences ranging from highly branched compound/panicle inflorescences to unbranched spike inflorescences. The unbranched spike is a characteristic feature of the species of tribe Triticeae, including economically important crops, such as wheat and barley. In this review, we describe two important developmental genetic mechanisms regulating spike inflorescence architecture in barley and wheat. These include genetic regulation of (i) row-type pathway specific to Hordeum species and (ii) unbranched spike development in barley and wheat. For a comparative understanding, we describe the branched inflorescence phenotypes of rice and maize along with unbranched Triticeae inflorescences. In the end, we propose a simplified model describing a probable mechanism leading to unbranched spike formation in Triticeae species.


Subject(s)
Hordeum/anatomy & histology , Hordeum/growth & development , Inflorescence/growth & development , Plant Development , Triticum/anatomy & histology , Triticum/growth & development , Biological Evolution , Hordeum/genetics , Meristem/growth & development , Triticum/genetics
13.
Plant Physiol ; 175(4): 1720-1731, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29101279

ABSTRACT

Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships.


Subject(s)
Gene Expression Regulation, Plant/physiology , Hordeum/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Amino Acid Substitution , Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Markers , Genome-Wide Association Study , Haplotypes , Hordeum/genetics , Mutation , Plant Development/genetics , Plant Development/physiology , Plant Proteins/chemistry , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Transcription, Genetic
14.
Plant J ; 91(4): 601-612, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28482117

ABSTRACT

Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number.


Subject(s)
Hordeum/genetics , Transcription Factors/metabolism , Transcriptome , Genes, Homeobox , Genome-Wide Association Study , Genotype , Hordeum/cytology , Hordeum/growth & development , Mutation , Phenotype , Phylogeny , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics
15.
Nat Genet ; 49(1): 157-161, 2017 01.
Article in English | MEDLINE | ID: mdl-27841879

ABSTRACT

Plant architecture has clear agronomic and economic implications for crops such as wheat and barley, as it is a critical factor for determining grain yield. Despite this, only limited molecular information is available about how grain-bearing inflorescences, called spikes, are formed and maintain their regular, distichous pattern. Here we elucidate the molecular and hormonal role of Six-rowed spike 2 (Vrs2), which encodes a SHORT INTERNODES (SHI) transcriptional regulator during barley inflorescence and shoot development. We show that Vrs2 is specifically involved in floral organ patterning and phase duration by maintaining hormonal homeostasis and gradients during normal spike development and similarly influences plant stature traits. Furthermore, we establish a link between the SHI protein family and sucrose metabolism during organ growth and development that may have implications for deeper molecular insights into inflorescence and plant architecture in crops.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Hordeum/growth & development , Inflorescence/growth & development , Meristem/growth & development , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Genetic Variation , Hordeum/drug effects , Hordeum/genetics , Inflorescence/drug effects , Inflorescence/genetics , Meristem/drug effects , Meristem/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Transcriptome
16.
Front Genet ; 7: 117, 2016.
Article in English | MEDLINE | ID: mdl-27446200

ABSTRACT

Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture.

17.
Genetics ; 201(1): 155-65, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26156223

ABSTRACT

Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. 'Compositum-Barley' and tetraploid 'Miracle-Wheat' (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation 'Miracle-Wheat' produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in 'Compositum-Barley,' i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched head(t) (bh(t)) locus regulating spike branching in tetraploid 'Miracle-Wheat.' Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bh(t) locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of 'Miracle-Wheat.' mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat's yield potential.


Subject(s)
Hordeum/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Gene Expression Profiling , Gene Expression Regulation, Plant , Hordeum/ultrastructure , Sequence Homology, Nucleic Acid , Triticum/ultrastructure
18.
Theor Appl Genet ; 127(5): 1123-31, 2014 May.
Article in English | MEDLINE | ID: mdl-24563243

ABSTRACT

KEY MESSAGE: The recessive labile locus mapped on chromosome 5HL causes irregular spikelet fertility and controls floret development as well as row-type in barley. The labile-barley displays a variable number of fertile spikelets at each rachis internode (0-3 fertile spikelets/rachis internode) which is intermediate between that observed in two- or six-rowed types. Previous re-sequencing of Vrs1 in 219 labile-barley (Hordeum vulgare L. convar. labile) accessions showed that all carried a six-rowed specific allele. We therefore hypothesized that this seemingly random reduction in spikelet fertility is most likely caused by the labile (lab) locus, which we aimed to phenotypically and genetically define. Here, we report a detailed phenotypic analysis of spikelet fertility in labile-barleys in comparison to two- and six-rowed genotypes using scanning electron microscopy analysis. We found that the first visible morphological deviation occurred during the stamen primordium stage, when we regularly observed the appearance of arrested central floral primordia in labile but not in two- or six-rowed barleys. At late stamen and early awn primordium stages, lateral florets in two-rowed and only some in labile-barley showed retarded development and reduction in size compared with fully fertile lateral florets in six-rowed barley. We used two F2 mapping populations to generate whole genome genetic linkage maps and ultimately locate the lab locus as a recessive Mendelian trait to a 4.5-5.8 cM interval at approximately 80 cM on chromosome 5HL. Our results will help identifying the role of the lab gene in relation to other spikelet fertility factors in barley.


Subject(s)
Genes, Plant , Hordeum/genetics , Chromosome Mapping , Fertility , Genes, Recessive , Genetic Association Studies , Hordeum/physiology , Hordeum/ultrastructure , Microscopy, Electron, Scanning
19.
Proc Natl Acad Sci U S A ; 110(32): 13198-203, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878219

ABSTRACT

Inflorescence architecture of barley (Hordeum vulgare L.) is common among the Triticeae species, which bear one to three single-flowered spikelets at each rachis internode. Triple spikelet meristem is one of the unique features of barley spikes, in which three spikelets (one central and two lateral spikelets) are produced at each rachis internode. Fertility of the lateral spikelets at triple spikelet meristem gives row-type identity to barley spikes. Six-rowed spikes show fertile lateral spikelets and produce increased grain yield per spike, compared with two-rowed spikes with sterile lateral spikelets. Thus, far, two loci governing the row-type phenotype were isolated in barley that include Six-rowed spike1 (Vrs1) and Intermedium-C. In the present study, we isolated Six-rowed spike4 (Vrs4), a barley ortholog of the maize (Zea mays L.) inflorescence architecture gene RAMOSA2 (RA2). Eighteen coding mutations in barley RA2 (HvRA2) were specifically associated with lateral spikelet fertility and loss of spikelet determinacy. Expression analyses through mRNA in situ hybridization and microarray showed that Vrs4 (HvRA2) controls the row-type pathway through Vrs1 (HvHox1), a negative regulator of lateral spikelet fertility in barley. Moreover, Vrs4 may also regulate transcripts of barley SISTER OF RAMOSA3 (HvSRA), a putative trehalose-6-phosphate phosphatase involved in trehalose-6-phosphate homeostasis implicated to control spikelet determinacy. Our expression data illustrated that, although RA2 is conserved among different grass species, its down-stream target genes appear to be modified in barley and possibly other species of tribe Triticeae.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , Inflorescence/genetics , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Fertility/genetics , Gene Expression Profiling , Haplotypes , Hordeum/metabolism , Hordeum/ultrastructure , Inflorescence/metabolism , Inflorescence/ultrastructure , Microscopy, Electron, Scanning , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
20.
BMC Plant Biol ; 10: 15, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20089171

ABSTRACT

BACKGROUND: The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis. RESULTS: The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea. CONCLUSION: A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut.


Subject(s)
Arachis/genetics , Genome, Plant , Microsatellite Repeats , Alleles , Arachis/classification , Cluster Analysis , DNA Primers , DNA, Plant/genetics , Genetic Variation , Genomic Library , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...